Non-local parallel transport in BOUT plus

被引:8
|
作者
Omotani, J. T. [1 ]
Dudson, B. D. [2 ]
Havlickova, E. [1 ]
Umansky, M. [3 ]
机构
[1] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[2] Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.jnucmat.2014.10.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-local closures allow kinetic effects on parallel transport to be included in fluid simulations. This is especially important in the scrape-off layer, but to be useful there the non-local model requires consistent kinetic boundary conditions at the sheath. A non-local closure scheme based on solution of a kinetic equation using a diagonalized moment expansion has been previously reported. We derive a method for imposing kinetic boundary conditions in this scheme and discuss their implementation in BOUT++. To make it feasible to implement the boundary conditions in the code, we are lead to transform the non-local model to a different moment basis, better adapted to describe parallel dynamics. The new basis has the additional benefit of enabling substantial optimization of the closure calculation, resulting in an Omicron(10) speedup of the non-local code. (C) 2014 EURATOM/CCFE Fusion Association. Published by Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:769 / 772
页数:4
相关论文
共 50 条
  • [31] High order scheme for the non-local transport in ICF plasmas
    Feugeas, J. -L.
    Nicolai, Ph.
    Schurtz, G.
    Charrier, P.
    Ahusborde, E.
    JOURNAL DE PHYSIQUE IV, 2006, 133 : 205 - 207
  • [32] Non-local neoclassical transport simulation of geodesic acoustic mode
    Satake, S
    Okamoto, M
    Nakajima, N
    Sugama, H
    Yokoyama, M
    Beidler, CD
    NUCLEAR FUSION, 2005, 45 (11) : 1362 - 1368
  • [33] Non-local transport in a multi-wall carbon nanotube
    Kim, N
    Kim, J
    Lee, JO
    Kang, K
    Yoo, KH
    Park, JW
    Lee, HW
    Kim, JJ
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (03) : 789 - 792
  • [34] The fractional Fick's law for non-local transport processes
    Paradisi, P
    Cesari, R
    Mainardi, F
    Tampieri, F
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 293 (1-2) : 130 - 142
  • [35] ON THE BLOW UP OF A NON-LOCAL TRANSPORT EQUATION IN COMPACT MANIFOLDS
    Alonso-Oran, Diego
    Martinez, Angel David
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (02) : 723 - 735
  • [36] Non-local electron transport in laser-produced plasmas
    Sunahara, A.
    Mima, K.
    Johzaki, T.
    Nagatomo, H.
    JOURNAL DE PHYSIQUE IV, 2006, 133 : 193 - 195
  • [37] Experimental evidence of the non-local response of transport to peripheral perturbations
    Sun, H. J.
    Diamond, P. H.
    Shi, Z. B.
    Chen, C. Y.
    Yao, L. H.
    Ding, X. T.
    Feng, B. B.
    Huang, X. L.
    Zhou, Y.
    Zhou, J.
    Song, X. M.
    NUCLEAR FUSION, 2011, 51 (11)
  • [38] Analysis of two parallel symmetric cracks using the non-local theory
    Zhou, ZG
    Sun, JL
    Wang, B
    MECHANICS RESEARCH COMMUNICATIONS, 2001, 28 (04) : 413 - 421
  • [39] Developing non-local iterative parallel algorithms for GIS on a workstation network
    Clematis, A
    Coda, A
    Spagnuolo, M
    PROCEEDINGS OF THE SIXTH EUROMICRO WORKSHOP ON PARALLEL AND DISTRIBUTED PROCESSING - PDP '98, 1998, : 250 - 256
  • [40] Towards an emerging understanding of non-locality phenomena and non-local transport
    Ida, K.
    Shi, Z.
    Sun, H. J.
    Inagaki, S.
    Kamiya, K.
    Rice, J. E.
    Tamura, N.
    Diamond, P. H.
    Dif-Pradalier, G.
    Zou, X. L.
    Itoh, K.
    Sugita, S.
    Guercan, O. D.
    Estrada, T.
    Hidalgo, C.
    Hahm, T. S.
    Field, A.
    Ding, X. T.
    Sakamoto, Y.
    Oldenbuerger, S.
    Yoshinuma, M.
    Kobayashi, T.
    Jiang, M.
    Hahn, S. H.
    Jeon, Y. M.
    Hong, S. H.
    Kosuga, Y.
    Dong, J.
    Itoh, S. -I.
    NUCLEAR FUSION, 2015, 55 (01)