Non-local parallel transport in BOUT plus

被引:8
|
作者
Omotani, J. T. [1 ]
Dudson, B. D. [2 ]
Havlickova, E. [1 ]
Umansky, M. [3 ]
机构
[1] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[2] Univ York, Dept Phys, York Plasma Inst, York YO10 5DD, N Yorkshire, England
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.jnucmat.2014.10.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-local closures allow kinetic effects on parallel transport to be included in fluid simulations. This is especially important in the scrape-off layer, but to be useful there the non-local model requires consistent kinetic boundary conditions at the sheath. A non-local closure scheme based on solution of a kinetic equation using a diagonalized moment expansion has been previously reported. We derive a method for imposing kinetic boundary conditions in this scheme and discuss their implementation in BOUT++. To make it feasible to implement the boundary conditions in the code, we are lead to transform the non-local model to a different moment basis, better adapted to describe parallel dynamics. The new basis has the additional benefit of enabling substantial optimization of the closure calculation, resulting in an Omicron(10) speedup of the non-local code. (C) 2014 EURATOM/CCFE Fusion Association. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:769 / 772
页数:4
相关论文
共 50 条
  • [21] A theory of non-local linear drift wave transport
    Moradi, S.
    Anderson, J.
    Weyssow, B.
    PHYSICS OF PLASMAS, 2011, 18 (06)
  • [22] Non-local energy transport in tunneling and plasmonic structures
    Frias, Winston
    Smolyakov, Andrei
    Hirose, Akira
    PHOTONICS NORTH 2010, 2010, 7750
  • [23] General non-local electrodynamics: Equations and non-local effects
    Tarasov, Vasily E.
    ANNALS OF PHYSICS, 2022, 445
  • [24] Simulation of lithium transport using the BOUT plus plus framework
    Wang, Y. M.
    Xu, X. Q.
    Wang, Z.
    Li, N. M.
    Yang, X. D.
    Sun, Z.
    Xia, T. Y.
    Zhang, L.
    Wang, Z. H.
    Gao, X.
    COMPUTER PHYSICS COMMUNICATIONS, 2021, 269
  • [25] Competing local and non-local α-effects for a simplified flux transport dynamo model
    Mann, P. D.
    Proctor, M. R. E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 399 (01) : L99 - L102
  • [26] NON-LOCAL TRANSPORT IN THE SCRAPE-OFF TOKAMAK PLASMA
    IGITKHANOV, YL
    YUSHMANOV, PN
    CONTRIBUTIONS TO PLASMA PHYSICS, 1988, 28 (4-5) : 341 - 344
  • [27] On the shape of hot-carrier tails in non-local transport
    Pacelli, A
    Lacaita, AL
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1996, 11 (11) : 1642 - 1645
  • [28] On the shape of hot-carrier tails in non-local transport
    Politecnico di Milano, Milano, Italy
    Semicond Sci Technol, 11 (1642-1645):
  • [29] Kondo physics in non-local metallic spin transport devices
    L. O'Brien
    M. J. Erickson
    D. Spivak
    H. Ambaye
    R. J. Goyette
    V. Lauter
    P. A. Crowell
    C. Leighton
    Nature Communications, 5
  • [30] Kondo physics in non-local metallic spin transport devices
    O'Brien, L.
    Erickson, M. J.
    Spivak, D.
    Ambaye, H.
    Goyette, R. J.
    Lauter, V.
    Crowell, P. A.
    Leighton, C.
    NATURE COMMUNICATIONS, 2014, 5