Persistent sourcing of coherent spins for multifunctional semiconductor spintronics

被引:199
|
作者
Malajovich, I
Berry, JJ
Samarth, N
Awschalom, DD [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
关键词
D O I
10.1038/35081014
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Recent studies of n-type semiconductors have demonstrated spin-coherent transport over macroscopic distances(1), with spin-coherence times exceeding 100 ns(2,3); such materials are therefore potentially useful building blocks for spin-polarized electronics ('spintronics'). Spin injection into a semiconductor (a necessary step for spin electronics(4)) has proved difficult(5,6); the only successful approach involves classical injection of spins from magnetic semiconductors(7,8). Other work has shown that optical excitation can provide a short (<500 ps) non-equilibrium burst of coherent spin transfer across a GaAs/ZnSe interface, but less than 10% of the total spin crosses into the ZnSe layer, leaving long-lived spins trapped in the GaAs layer (ref. 9). Here we report a 'persistent' spin-conduction mode in biased semiconductor heterostructures, in which the sourcing of coherent spin transfer lasts at least 1-2 orders of magnitude longer than in unbiased structures. We use time-resolved Kerr spectroscopy to distinguish several parallel channels of interlayer spin-coherent injection. The relative increase in spin-coherent injection is up to 500% in the biased structures, and up to 4,000% when p-n junctions are used to impose a built-in bias. These experiments reveal promising opportunities for multifunctional spin electronic devices (such as spin transistors that combine memory and logic functions), in which the amplitude and phase of the net spin current are controlled by either electrical or magnetic fields.
引用
收藏
页码:770 / 772
页数:4
相关论文
共 50 条
  • [21] Semiconductor Spintronics Preface
    Koenig, Juergen
    Oestreich, Michael
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2014, 251 (09): : 1651 - 1651
  • [22] Spintronics with semiconductor nanowires
    Schaepers, Thomas
    Heedt, Sebastian
    Bringer, Andreas
    Otto, Isabel
    Sladek, Kamil
    Hardtdegen, Hilde
    Gruetzmacher, Detlev
    Prost, Werner
    2016 COMPOUND SEMICONDUCTOR WEEK (CSW) INCLUDES 28TH INTERNATIONAL CONFERENCE ON INDIUM PHOSPHIDE & RELATED MATERIALS (IPRM) & 43RD INTERNATIONAL SYMPOSIUM ON COMPOUND SEMICONDUCTORS (ISCS), 2016,
  • [23] Ferromagnetic semiconductor spintronics
    Ohno, H
    PHYSICS OF SEMICONDUCTORS 2002, PROCEEDINGS, 2003, 171 : 37 - 45
  • [24] Modelling for semiconductor spintronics
    Saikin, S
    Pershin, YV
    Privman, V
    IEE PROCEEDINGS-CIRCUITS DEVICES AND SYSTEMS, 2005, 152 (04): : 366 - 376
  • [25] Challenges for semiconductor spintronics
    David D. Awschalom
    Michael E. Flatté
    Nature Physics, 2007, 3 : 153 - 159
  • [26] QUANTUM SPINTRONICS Single spins in silicon carbide
    Morello, Andrea
    NATURE MATERIALS, 2015, 14 (02) : 135 - 136
  • [27] SPINTRONICS Coherent terahertz control
    Kono, Junichiro
    NATURE PHOTONICS, 2011, 5 (01) : 5 - 6
  • [28] Carbon nanotubes for coherent spintronics
    Kuemmeth, F.
    Churchill, H. O. H.
    Herring, P. K.
    Marcus, C. M.
    MATERIALS TODAY, 2010, 13 (03) : 18 - 26
  • [29] Semiconductor spintronics and its requirements
    Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111, Australia
    不详
    J. Optoelectron. Adv. Mat., 2008, 10 (2487-2493):
  • [30] Coherent transfer of light polarization to electron spins in a semiconductor - toward quantum media conversion
    Kosaka, H.
    Shigyou, H.
    Mitsumori, Y.
    Rikitake, Y.
    Imamura, H.
    Kutsuwa, T.
    Edamatsu, K.
    2008 CONFERENCE ON LASERS AND ELECTRO-OPTICS & QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE, VOLS 1-9, 2008, : 3547 - +