Multi-objective optimisation of the humid air turbine

被引:0
|
作者
Kavanagh, Ronan M. [1 ]
Parks, Geoffrey T. [1 ]
Obana, Mitsuru
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Optimisation of the Humid Air Turbine (HAT) power cycle has proven an interesting challenge in multi-variate and multi-objective optimisation. A multi-objective Tabu Search optimisation algorithm, developed in the Cambridge Engineering Design Centre, has been applied to this humid power cycle. A tradeoff surface is generated to investigate the impact of nine primary system control variables on the performance (efficiency, specific work and cost of electricity) of the system. This optimisation tool was chosen for its proven robustness and flexibility in handling highly constrained, multi-variate problems. The algorithm generates a Pareto-set of optimal candidate designs, allowing the designer to analyse the trade-off between performance measures such as efficiency and cost when selecting the ultimate system operating point. The study is primarily a global optimisation, with attention being paid to the primary system control variables: pressure ratio, turbine inlet temperature, IP/HP pressure split, water flow-rate distribution and heat exchanger effectiveness.
引用
收藏
页码:211 / 221
页数:11
相关论文
共 50 条
  • [31] A multi-objective chemical reaction optimisation algorithm for multi-objective travelling salesman problem
    [J]. Bouzoubia, Samira, 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (06):
  • [32] Multi-Stage, Multi-Objective Process Optimisation
    Yoseph, Azene. T.
    Rajkumar, Roy
    [J]. GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2063 - 2064
  • [33] Population extremal optimisation for discrete multi-objective optimisation problems
    Randall, M.
    Lewis, A.
    [J]. INFORMATION SCIENCES, 2016, 367 : 390 - 402
  • [34] On the Potential of Multi-objective Automated Algorithm Configuration on Multi-modal Multi-objective Optimisation Problems
    Preuss, Oliver Ludger
    Rook, Jeroen
    Trautmann, Heike
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2024, PT I, 2024, 14634 : 305 - 321
  • [35] Multi-objective optimisation of a floating LNG terminal
    Boulougouris, Evangelos K.
    Papanikolaou, Apostolos D.
    [J]. OCEAN ENGINEERING, 2008, 35 (8-9) : 787 - 811
  • [36] Multi-objective optimisation of sewer maintenance scheduling
    Draude, Sabrina
    Keedwell, Ed
    Kapelan, Zoran
    Hiscock, Rebecca
    [J]. JOURNAL OF HYDROINFORMATICS, 2022, 24 (03) : 574 - 589
  • [37] Evolutionary Dynamic Multi-objective Optimisation: A Survey
    Jiang, Shouyong
    Zou, Juan
    Yang, Shengxiang
    Yao, Xin
    [J]. ACM COMPUTING SURVEYS, 2023, 55 (04)
  • [38] Multi-objective Optimisation with Multiple Preferred Regions
    Mahbub, Md. Shahriar
    Wagner, Markus
    Crema, Luigi
    [J]. ARTIFICIAL LIFE AND COMPUTATIONAL INTELLIGENCE, ACALCI 2017, 2017, 10142 : 241 - 253
  • [39] Multi-objective optimisation of composite aerospace structures
    Wang, K
    Kelly, D
    Dutton, S
    [J]. COMPOSITE STRUCTURES, 2002, 57 (1-4) : 141 - 148
  • [40] Scantling multi-objective optimisation of a LNG carrier
    Caprace, J. -D.
    Bair, F.
    Rigo, P.
    [J]. MARINE STRUCTURES, 2010, 23 (03) : 288 - 302