Subspace Inference for Bayesian Deep Learning

被引:0
|
作者
Izmailov, Pavel [1 ]
Maddox, Wesley J. [1 ]
Kirichenko, Polina [1 ]
Garipov, Timur [4 ]
Vetrov, Dmitry [2 ,3 ]
Wilson, Andrew Gordon [1 ]
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
[2] Higher Sch Econ, Moscow, Russia
[3] Samsung HSE Lab, Moscow, Russia
[4] Samsung AI Ctr Moscow, Moscow, Russia
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian inference was once a gold standard for learning with neural networks, providing accurate full predictive distributions and well calibrated uncertainty. However, scaling Bayesian inference techniques to deep neural networks is challenging due to the high dimensionality of the parameter space. In this paper, we construct low-dimensional subspaces of parameter space, such as the first principal components of the stochastic gradient descent (SGD) trajectory, which contain diverse sets of high performing models. In these subspaces, we are able to apply elliptical slice sampling and variational inference, which struggle in the full parameter space. We show that Bayesian model averaging over the induced posterior in these subspaces produces accurate predictions and well-calibrated predictive uncertainty for both regression and image classification.
引用
收藏
页码:1169 / 1179
页数:11
相关论文
共 50 条
  • [21] Online Reinforcement Learning by Bayesian Inference
    Xia, Zhongpu
    Zhao, Dongbin
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [22] Brain MRI Deep Learning and Bayesian Inference System Augments Radiology Resident Performance
    Rudie, Jeffrey D.
    Duda, Jeffrey
    Duong, Michael Tran
    Chen, Po-Hao
    Xie, Long
    Kurtz, Robert
    Ware, Jeffrey B.
    Choi, Joshua
    Mattay, Raghav R.
    Botzolakis, Emmanuel J.
    Gee, James C.
    Bryan, R. Nick
    Cook, Tessa S.
    Mohan, Suyash
    Nasrallah, Ilya M.
    Rauschecker, Andreas M.
    JOURNAL OF DIGITAL IMAGING, 2021, 34 (04) : 1049 - 1058
  • [23] Deep learning Bayesian inference for low-luminosity active galactic nuclei spectra
    Almeida, Ivan
    Duarte, Roberta
    Nemmen, Rodrigo
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 509 (04) : 5657 - 5668
  • [24] Generalized Variational Inference in Function Spaces: Gaussian Measures meet Bayesian Deep Learning
    Wild, Veit D.
    Hu, Robert
    Sejdinovic, Dino
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [25] Deep learning Bayesian inference for low-luminosity active galactic nuclei spectra
    Almeida, Ivan
    Duarte, Roberta
    Nemmen, Rodrigo
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 509 (04) : 5657 - 5668
  • [26] Communication Scheduling by Deep Reinforcement Learning for Remote Traffic State Estimation With Bayesian Inference
    Peng, Bile
    Xie, Yuhang
    Seco-Granados, Gonzalo
    Wymeersch, Henk
    Jorswieck, Eduard A.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (04) : 4287 - 4300
  • [27] Inference and learning in fuzzy Bayesian networks
    Baldwin, JF
    Di Tomaso, E
    PROCEEDINGS OF THE 12TH IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1 AND 2, 2003, : 630 - 635
  • [28] On Sequential Bayesian Inference for Continual Learning
    Kessler, Samuel
    Cobb, Adam
    Rudner, Tim G. J.
    Zohren, Stefan
    Roberts, Stephen J.
    ENTROPY, 2023, 25 (06)
  • [29] Brain MRI Deep Learning and Bayesian Inference System Augments Radiology Resident Performance
    Jeffrey D. Rudie
    Jeffrey Duda
    Michael Tran Duong
    Po-Hao Chen
    Long Xie
    Robert Kurtz
    Jeffrey B. Ware
    Joshua Choi
    Raghav R. Mattay
    Emmanuel J. Botzolakis
    James C. Gee
    R. Nick Bryan
    Tessa S. Cook
    Suyash Mohan
    Ilya M. Nasrallah
    Andreas M. Rauschecker
    Journal of Digital Imaging, 2021, 34 : 1049 - 1058
  • [30] Deep Bayesian inference for seismic imaging with tasks
    Siahkoohi, Ali
    Rizzuti, Gabrio
    Herrmann, Felix J.
    GEOPHYSICS, 2022, 87 (05) : S281 - S302