Subspace Inference for Bayesian Deep Learning

被引:0
|
作者
Izmailov, Pavel [1 ]
Maddox, Wesley J. [1 ]
Kirichenko, Polina [1 ]
Garipov, Timur [4 ]
Vetrov, Dmitry [2 ,3 ]
Wilson, Andrew Gordon [1 ]
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
[2] Higher Sch Econ, Moscow, Russia
[3] Samsung HSE Lab, Moscow, Russia
[4] Samsung AI Ctr Moscow, Moscow, Russia
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bayesian inference was once a gold standard for learning with neural networks, providing accurate full predictive distributions and well calibrated uncertainty. However, scaling Bayesian inference techniques to deep neural networks is challenging due to the high dimensionality of the parameter space. In this paper, we construct low-dimensional subspaces of parameter space, such as the first principal components of the stochastic gradient descent (SGD) trajectory, which contain diverse sets of high performing models. In these subspaces, we are able to apply elliptical slice sampling and variational inference, which struggle in the full parameter space. We show that Bayesian model averaging over the induced posterior in these subspaces produces accurate predictions and well-calibrated predictive uncertainty for both regression and image classification.
引用
收藏
页码:1169 / 1179
页数:11
相关论文
共 50 条
  • [1] Incremental Kernel Principal Components Subspace Inference With Nystrom Approximation for Bayesian Deep Learning
    Wang, Yongguang
    Yao, Shuzhen
    Xu, Tian
    IEEE ACCESS, 2021, 9 : 36241 - 36251
  • [2] Collapsed Inference for Bayesian Deep Learning
    Zeng, Zhe
    Van den Broeck, Guy
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [4] Bayesian Deep Learning via Subnetwork Inference
    Daxberger, Erik
    Nalisnick, Eric
    Allingham, James Urquhart
    Antoran, Javier
    Hernandez-Lobato, Jose Miguel
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [5] Evaluating Approximate Inference in Bayesian Deep Learning
    Wilson, Andrew Gordon
    Lotfi, Sanae
    Vikram, Sharad
    Hoffman, Matthew D.
    Gal, Yarin
    Li, Yingzhen
    Pradier, Melanie F.
    Foong, Andrew
    Farquhar, Sebastian
    Izmailov, Pavel
    NEURIPS 2021 COMPETITIONS AND DEMONSTRATIONS TRACK, VOL 176, 2021, 176 : 113 - 124
  • [6] Functional Wasserstein Bridge Inference for Bayesian Deep Learning
    Wu, Mengjing
    Xuan, Junyu
    Lu, Jie
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2024, 244 : 3791 - 3815
  • [7] Bayesian Semi-structured Subspace Inference
    Dold, Daniel
    Ruegamer, David
    Sick, Beate
    Duerr, Oliver
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [8] Walsh-Hadamard Variational Inference for Bayesian Deep Learning
    Rossi, Simone
    Marmin, Sebastien
    Filippone, Maurizio
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [9] Deep Bayesian Sparse Subspace Clustering
    Ye, Xulun
    Luo, Shuhui
    Chao, Jieyu
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1888 - 1892
  • [10] Bayesian inference for deep excavations
    de Wolf, W. J.
    Korff, M.
    van Seters, A.
    van Dalen, J. H.
    GEOTECHNICAL ASPECTS OF UNDERGROUND CONSTRUCTION IN SOFT GROUND, 2021, : 529 - 535