Contravariant pairings between standard Whittaker modules and Verma modules

被引:3
|
作者
Brown, Adam [1 ]
Romanov, Anna [2 ]
机构
[1] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[2] Univ New South Wales, Sydney, NSW 2052, Australia
基金
欧盟地平线“2020”; 美国国家科学基金会; 澳大利亚研究理事会;
关键词
RepresentationsofcomplexLie; algebras; CategoryO; Whittakermodules; Vermamodules; Contravariantforms; Beilinson-Bernsteinlocalization; ALGEBRAS; FUNCTORS; VECTORS;
D O I
10.1016/j.jalgebra.2022.06.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify contravariant pairings between standard Whit-taker modules and Verma modules over a complex semisimple Lie algebra. These contravariant pairings are useful in ex-tending several classical techniques for category O to the Milicic-Soergel category N. We introduce a class of costandard modules which generalize dual Verma modules, and de-scribe canonical maps from standard to costandard modules in terms of contravariant pairings. We show that costandard modules have unique irreducible submodules and share the same composition factors as the corresponding standard Whittaker modules. We show that costandard modules give an algebraic characterization of the global sections of costandard twisted Harish-Chandra sheaves on the associated flag variety, which are defined using holonomic duality of D-modules. We prove that with these costandard modules, blocks of category N have the structure of highest weight categories and we establish a BGG reciprocity theorem for N. (C) 2022 The Author(s). Published by Elsevier Inc.
引用
收藏
页码:145 / 179
页数:35
相关论文
共 50 条
  • [41] On irreducibility of modules of Whittaker type: Twisted modules and nonabelian orbifolds
    Adamovic, Drazen
    Lam, Ching Hung
    Tomic, Veronika Pedic
    Yu, Nina
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (01)
  • [43] ALTERNATING SIGN MATRICES AND VERMA MODULES
    Ko, Hankyung
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (03) : 949 - 959
  • [44] Contravariant functors on the category of finitely presented modules
    Herzog, Ivo
    ISRAEL JOURNAL OF MATHEMATICS, 2008, 167 (01) : 347 - 410
  • [45] Generalized imaginary Verma and Wakimoto modules
    Guerrini, Marcela
    Kashuba, Iryna
    Morales, Oscar
    de Oliveira, Andre
    Santos, Fernando Junior
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (07)
  • [46] VERMA MODULES OVER THE VIRASORO ALGEBRA
    FEIGIN, BL
    FUKS, DB
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1983, 17 (03) : 241 - 242
  • [47] Almost split sequences of Verma modules
    R. Farnsteiner
    G. Röhrle
    Mathematische Annalen, 2002, 322 : 701 - 743
  • [48] On radical filtrations of parabolic Verma modules
    Hu, Jun
    Xiao, Wei
    MATHEMATICAL RESEARCH LETTERS, 2023, 30 (05) : 1485 - 1510
  • [49] α-Primitive elements in the generalized verma modules
    Khomenko O.M.
    Ukrainian Mathematical Journal, 2000, 52 (8) : 1300 - 1306
  • [50] VERMA MODULES AND DIFFERENTIAL CONFORMAL INVARIANTS
    BASTON, RJ
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1990, 32 (03) : 851 - 898