On radical filtrations of parabolic Verma modules

被引:0
|
作者
Hu, Jun [1 ]
Xiao, Wei [2 ]
机构
[1] Beijing Inst Technol, Minist Educ, Sch Math & Stat, Key Lab Algebra Lie Theory & Anal, Beijing 100081, Peoples R China
[2] Shenzhen Univ, Sch Math Sci, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Guangdong, Peoples R China
关键词
QUIVER SCHUR ALGEBRAS; INDUCED REPRESENTATIONS; CATEGORY-O; HOMOMORPHISMS; BLOCKS; VECTORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a sum formula for the radical filtration of parabolic Verma modules in any (possibly singular) blocks of parabolic BGG category. It can be viewed as a generalization of the Jantzen sum formula for Verma modules in the usual BGG category O . The proof makes use of the graded version of parabolic BGG category. Explicit formulae for the graded decomposition numbers and inverse graded decomposition numbers of parabolic Verma modules in any (possibly singular) integral blocks of the parabolic BGG category are also given in terms of the KazhdanLusztig polynomials.
引用
收藏
页码:1485 / 1510
页数:26
相关论文
共 50 条
  • [1] FILTRATIONS ON VERMA MODULES
    BARBASCH, D
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1983, 16 (03): : 489 - 494
  • [2] FILTRATIONS ON GENERALIZED VERMA MODULES FOR HERMITIAN SYMMETRIC PAIRS
    COLLINGWOOD, DH
    IRVING, RS
    SHELTON, B
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 383 : 54 - 86
  • [3] On the Ext algebras of parabolic Verma modules and A∞-structures
    Klamt, Angela
    Stroppel, Catharina
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (02) : 323 - 336
  • [4] Parabolic Verma Modules and Invariant Differential Operators
    V. K. Dobrev
    Physics of Particles and Nuclei, 2020, 51 : 399 - 404
  • [5] Kostant's problem for parabolic Verma modules
    Mazorchuk, Volodymyr
    Srivastava, Shraddha
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2025,
  • [6] Jantzen coefficients and simplicity of parabolic Verma modules
    Xiao, Wei
    Zhang, Ailin
    JOURNAL OF ALGEBRA, 2022, 611 : 24 - 64
  • [7] Parabolic Verma Modules and Invariant Differential Operators
    Dobrev, V. K.
    PHYSICS OF PARTICLES AND NUCLEI, 2020, 51 (04) : 399 - 404
  • [8] JACQUET MODULES FOR SEMISIMPLE LIE-GROUPS HAVING VERMA MODULE FILTRATIONS
    COLLINGWOOD, DH
    JOURNAL OF ALGEBRA, 1991, 136 (02) : 353 - 375
  • [9] Unique Factorization for Tensor Products of Parabolic Verma Modules
    K. N. Raghavan
    V. Sathish Kumar
    R. Venkatesh
    Sankaran Viswanath
    Algebras and Representation Theory, 2024, 27 : 1203 - 1220
  • [10] Determinant formula for parabolic Verma modules of Lie superalgebras
    Oshima, Yoshiki
    Yamazaki, Masahito
    JOURNAL OF ALGEBRA, 2018, 495 : 51 - 80