On radical filtrations of parabolic Verma modules

被引:0
|
作者
Hu, Jun [1 ]
Xiao, Wei [2 ]
机构
[1] Beijing Inst Technol, Minist Educ, Sch Math & Stat, Key Lab Algebra Lie Theory & Anal, Beijing 100081, Peoples R China
[2] Shenzhen Univ, Sch Math Sci, Shenzhen Key Lab Adv Machine Learning & Applicat, Shenzhen 518060, Guangdong, Peoples R China
关键词
QUIVER SCHUR ALGEBRAS; INDUCED REPRESENTATIONS; CATEGORY-O; HOMOMORPHISMS; BLOCKS; VECTORS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a sum formula for the radical filtration of parabolic Verma modules in any (possibly singular) blocks of parabolic BGG category. It can be viewed as a generalization of the Jantzen sum formula for Verma modules in the usual BGG category O . The proof makes use of the graded version of parabolic BGG category. Explicit formulae for the graded decomposition numbers and inverse graded decomposition numbers of parabolic Verma modules in any (possibly singular) integral blocks of the parabolic BGG category are also given in terms of the KazhdanLusztig polynomials.
引用
收藏
页码:1485 / 1510
页数:26
相关论文
共 50 条
  • [41] Bigrassmannian permutations and Verma modules
    Ko, Hankyung
    Mazorchuk, Volodymyr
    Mrden, Rafael
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (04):
  • [42] Verma modules and preprojective algebras
    Geiss, Christof
    Leclerc, Bernard
    Schroer, Jan
    NAGOYA MATHEMATICAL JOURNAL, 2006, 182 : 241 - 258
  • [43] FILTRATIONS OF B-MODULES
    MATHIEU, O
    DUKE MATHEMATICAL JOURNAL, 1989, 59 (02) : 421 - 442
  • [44] JANTZEN FILTRATIONS OF WEYL MODULES
    ANDERSEN, HH
    MATHEMATISCHE ZEITSCHRIFT, 1987, 194 (01) : 127 - 142
  • [45] ALTERNATING SIGN MATRICES AND VERMA MODULES
    Ko, Hankyung
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (03) : 949 - 959
  • [47] The b-functions for prehomogeneous vector spaces of commutative parabolic type and universal generalized Verma modules
    Kamita, A
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2005, 41 (02) : 471 - 495
  • [48] Generalized imaginary Verma and Wakimoto modules
    Guerrini, Marcela
    Kashuba, Iryna
    Morales, Oscar
    de Oliveira, Andre
    Santos, Fernando Junior
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (07)
  • [49] VERMA MODULES OVER THE VIRASORO ALGEBRA
    FEIGIN, BL
    FUKS, DB
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1983, 17 (03) : 241 - 242
  • [50] Almost split sequences of Verma modules
    R. Farnsteiner
    G. Röhrle
    Mathematische Annalen, 2002, 322 : 701 - 743