Planar dislocation structure during creep-fatigue interactions of TP347H heat-resistant austenitic steel at 600 °C

被引:21
|
作者
Zhou, Hongwei [1 ,2 ]
Zhang, Hongyan [1 ,2 ]
Bai, Fengmei [3 ,4 ]
Song, Meng [1 ,4 ]
Chen, Yan [1 ,2 ]
Zhang, Liqiang [3 ]
Fang, Xudong [5 ]
He, Yizhu [1 ,2 ]
机构
[1] Anhui Univ Technol, Key Lab Green Fabricat & Surface Technol Adv Met, Minist Educ, Maanshan 243002, Peoples R China
[2] Anhui Univ Technol, Sch Mat Sci & Engn, Maanshan 243002, Anhui, Peoples R China
[3] Anhui Univ Technol, Sch Met Engn, Maanshan 243002, Anhui, Peoples R China
[4] Northeastern Univ, State Key Lab Rolling & Automat, Shenyang 110189, Peoples R China
[5] Taiyuan Iron & Steel Grp Co Ltd, State Key Lab Adv Stainless Steel, Taiyuan 030003, Peoples R China
基金
中国国家自然科学基金;
关键词
Heat-resistant austenitic steel; Creep-fatigue; Low cycle fatigue; Fatigue fracture mode; Planar slip structure; LOW-CYCLE FATIGUE; GRAIN-BOUNDARY CARBIDES; 316L STAINLESS-STEEL; INTERACTION BEHAVIOR; PREDICTION METHODS; DAMAGE MECHANISM; LIFE PREDICTION; DEFORMATION; EVOLUTION; PRECIPITATION;
D O I
10.1016/j.msea.2020.139141
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The low-cycle fatigue (LCF) and creep-fatigue (CF) interaction tests of TP347H austenitic stainless steel are carried out in air under a fully-reversed strain amplitude of 1.0% at 600 degrees C. A 10 min tensile dwell is applied in CF interaction testing. The influences of dwell on dislocation structures and fracture behavior have been evaluated. It is found that CF interaction life is lower than LCF one. The fatigue fracture mode changes from transgranular crack under LCF to transgranular plus intergranular fracture with tensile dwell. A lot of dislocation planar slip bands (PSBs) were found under CF interaction condition. PSB interacts with PSB of another slip system, twins, grain boundary (GB), and triangular GB. Strongly PSB-GB interaction causes stress concentration at GB, creating cavities and crack initiation, causing intergranular fracture. The stress concentration within the PSBs will also cause cracks, resulting in transgranular fracture morphology with fatigue striation.
引用
收藏
页数:11
相关论文
共 48 条
  • [21] Precipitation Evolution in the Austenitic Heat-Resistant Steel HR3C upon Creep at 700 °C and 750 °C
    Xu, Liming
    He, Yinsheng
    Kang, Yeonkwan
    Jung, Jine-sung
    Shin, Keesam
    MATERIALS, 2022, 15 (13)
  • [22] Creep behavior and microstructure evolution at 750 °C in a new precipitation-strengthened heat-resistant austenitic stainless steel
    Vu The Ha
    Jung, Woo Sang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 558 : 103 - 111
  • [23] Creep fatigue interaction at high temperature in C630R ferritic/martensitic heat-resistant steel
    Ding, Kailun
    Tang, Zhengxin
    He, Xikou
    Wang, Xitao
    He, Jinshan
    Qiu, Jiajia
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 3608 - 3619
  • [25] Transformation of austenite during isothermal annealing at 600-900 °C for heat-resistant stainless steel
    Kosec, Ladislav
    Savli, Stefan
    Kozuh, Stjepan
    Grguric, Tamara Holjevac
    Nagode, Ales
    Kosec, Gorazd
    Drazic, Goran
    Gojic, Mirko
    JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 567 : 59 - 64
  • [26] Microstructural Evolution and Change in Hardness of S30432 Heat-resistant Steel during Creep at 650°C
    Zhu, L. H.
    Zhang, Y. J.
    Wang, Q. J.
    Xu, S. O.
    STEEL RESEARCH INTERNATIONAL, 2010, 81 (04) : 315 - 319
  • [27] Electron Backscattered Diffraction Investigation of Grain Boundary Creep Damage Features of HR3C Austenitic Heat-resistant Steel
    Hu Z.
    Zhang J.
    Zhang J.
    Tongji Daxue Xuebao/Journal of Tongji University, 2024, 52 (04): : 611 - 618
  • [28] Precipitation Kinetics of M23C6 Carbides in the Super304H Austenitic Heat-Resistant Steel
    Qingwen Zhou
    Shaobo Ping
    Xiaobo Meng
    Ruikun Wang
    Yan Gao
    Journal of Materials Engineering and Performance, 2017, 26 : 6130 - 6139
  • [29] Precipitation Kinetics of M23C6 Carbides in the Super304H Austenitic Heat-Resistant Steel
    Zhou, Qingwen
    Ping, Shaobo
    Meng, Xiaobo
    Wang, Ruikun
    Gao, Yan
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (12) : 6130 - 6139
  • [30] Precipitate Evolution in 22Cr25NiWCuCo(Nb) Austenitic Heat-Resistant Stainless Steel during Heat Treatment at 1200 °C
    Yang, Sheng-Min
    Wu, Jing-Lin
    Pan, Yeong-Tsuen
    Lin, Dong-Yih
    MATERIALS, 2021, 14 (05) : 1 - 12