Even cycles in hypergraphs

被引:3
|
作者
Kostochka, A
Verstraëte, J
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Inst Math, Novosibirsk 630090, Russia
[3] Univ Waterloo, Fac Math, Waterloo, ON N2L 3G1, Canada
基金
美国国家科学基金会;
关键词
hypergraph; hypertree; cycle;
D O I
10.1016/j.jctb.2004.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A cycle in a hypergraph is an alternating cyclic sequence A(0), v(0), A(1), v(1),..., A(k-1), Vk-1, A(0) of distinct edges A(i) and vertices v(i) such that v(i) is an element of A(i) n A(i+l) for all i modulo k. In this paper, we determine the maximum number of edges in hypergraphs on it vertices containing no even cycles. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 50 条
  • [31] Covering and tiling hypergraphs with tight cycles
    Han, Jie
    Lo, Allan
    Sanhueza-Matamala, Nicolas
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 288 - 329
  • [32] Tight Hamilton Cycles in Random Hypergraphs
    Allen, Peter
    Boettcher, Julia
    Kohayakawa, Yoshiharu
    Person, Yury
    RANDOM STRUCTURES & ALGORITHMS, 2015, 46 (03) : 446 - 465
  • [33] Counting Hamilton cycles in Dirac hypergraphs
    Glock, Stefan
    Gould, Stephen
    Joos, Felix
    Kuehn, Daniela
    Osthus, Deryk
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (04): : 631 - 653
  • [34] On rainbow Hamilton cycles in random hypergraphs
    Dudek, Andrzej
    English, Sean
    Frieze, Alan
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (02):
  • [35] On Even-Degree Subgraphs of Linear Hypergraphs
    Dellamonica, D., Jr.
    Haxell, P.
    Luczak, T.
    Mubayi, D.
    Nagle, B.
    Person, Y.
    Roedl, V.
    Schacht, M.
    Verstraete, J.
    COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (1-2): : 113 - 127
  • [36] MONOCHROMATIC EVEN CYCLES
    Gyarfas, Andras
    Palvoelgyi, Doemoetoer
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2012, 7 (01) : 48 - 50
  • [37] Even cycles in graphs
    Conlon, JG
    JOURNAL OF GRAPH THEORY, 2004, 45 (03) : 163 - 223
  • [38] Even cycles in graphs with many odd cycles
    Faudree, RJ
    Flandrin, E
    Jacobson, MS
    Lehel, J
    Schelp, RH
    GRAPHS AND COMBINATORICS, 2000, 16 (04) : 399 - 410
  • [39] Even Cycles in Graphs with Many Odd Cycles
    Ralph J. Faudree
    Evelyne Flandrin
    Michael S. Jacobson
    Jenő Lehel
    Richard H. Schelp
    Graphs and Combinatorics, 2000, 16 : 399 - 410
  • [40] The structure of hypergraphs without long Berge cycles
    Gyori, Ervin
    Lemons, Nathan
    Salia, Nika
    Zamora, Oscar
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 148 : 239 - 250