Even cycles in hypergraphs

被引:3
|
作者
Kostochka, A
Verstraëte, J
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Inst Math, Novosibirsk 630090, Russia
[3] Univ Waterloo, Fac Math, Waterloo, ON N2L 3G1, Canada
基金
美国国家科学基金会;
关键词
hypergraph; hypertree; cycle;
D O I
10.1016/j.jctb.2004.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A cycle in a hypergraph is an alternating cyclic sequence A(0), v(0), A(1), v(1),..., A(k-1), Vk-1, A(0) of distinct edges A(i) and vertices v(i) such that v(i) is an element of A(i) n A(i+l) for all i modulo k. In this paper, we determine the maximum number of edges in hypergraphs on it vertices containing no even cycles. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 50 条
  • [21] Finding even cycles even faster
    Yuster, R
    Zwick, U
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1997, 10 (02) : 209 - 222
  • [22] On offset Hamilton cycles in random hypergraphs
    Dudek, Andrzej
    Helenius, Laars
    DISCRETE APPLIED MATHEMATICS, 2018, 238 : 77 - 85
  • [23] Forbidding Hamilton cycles in uniform hypergraphs
    Han, Jie
    Zhao, Yi
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 143 : 107 - 115
  • [24] Counting Hamilton Cycles in Dirac Hypergraphs
    Asaf Ferber
    Liam Hardiman
    Adva Mond
    Combinatorica, 2023, 43 : 665 - 680
  • [25] Hamiltonian Berge cycles in random hypergraphs
    Bal, Deepak
    Berkowitz, Ross
    Devlin, Pat
    Schacht, Mathias
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 228 - 238
  • [26] The number of hypergraphs without linear cycles
    Balogh, Jozsef
    Narayanan, Bhargav
    Skokan, Jozef
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 134 : 309 - 321
  • [27] Rainbow Hamilton cycles in uniform hypergraphs
    Dudek, Andrzej
    Frieze, Alan
    Rucinski, Andrzej
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (01):
  • [28] Counting Hamilton Cycles in Dirac Hypergraphs
    Ferber, Asaf
    Hardiman, Liam
    Mond, Adva
    COMBINATORICA, 2023, 43 (4) : 665 - 680
  • [29] Loose Hamilton Cycles in Regular Hypergraphs
    Dudek, Andrzej
    Frieze, Alan
    Rucinski, Andrzej
    Sileikis, Matas
    COMBINATORICS PROBABILITY & COMPUTING, 2015, 24 (01): : 179 - 194
  • [30] Loose cores and cycles in random hypergraphs
    Cooley, Oliver
    Kang, Mihyun
    Zalla, Julian
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (04):