Even cycles in hypergraphs

被引:3
|
作者
Kostochka, A
Verstraëte, J
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Inst Math, Novosibirsk 630090, Russia
[3] Univ Waterloo, Fac Math, Waterloo, ON N2L 3G1, Canada
基金
美国国家科学基金会;
关键词
hypergraph; hypertree; cycle;
D O I
10.1016/j.jctb.2004.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A cycle in a hypergraph is an alternating cyclic sequence A(0), v(0), A(1), v(1),..., A(k-1), Vk-1, A(0) of distinct edges A(i) and vertices v(i) such that v(i) is an element of A(i) n A(i+l) for all i modulo k. In this paper, we determine the maximum number of edges in hypergraphs on it vertices containing no even cycles. (c) 2005 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:173 / 182
页数:10
相关论文
共 50 条
  • [1] Supersaturation of even linear cycles in linear hypergraphs
    Jiang, Tao
    Yepremyan, Liana
    COMBINATORICS PROBABILITY & COMPUTING, 2020, 29 (05): : 698 - 721
  • [2] Odd cycles and Θ-cycles in hypergraphs
    Gyarfas, Andras
    Jacobson, Michael S.
    Kezdy, Andre E.
    Lehel, Jeno
    DISCRETE MATHEMATICS, 2006, 306 (19-20) : 2481 - 2491
  • [3] Decompositions of complete 3-uniform hypergraphs into cycles of some special even lengths
    Lakshmi, R.
    Poovaragavan, T.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2022, 84 : 314 - 324
  • [4] Homology Cycles and Dependent Cycles of Hypergraphs
    Jian-fang WANG
    Xin XU
    Acta Mathematicae Applicatae Sinica, 2018, 34 (02) : 237 - 248
  • [5] Homology Cycles and Dependent Cycles of Hypergraphs
    Jian-fang Wang
    Xin Xu
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 237 - 248
  • [6] Paths and cycles of hypergraphs
    Jianfang Wang
    Tony T. Lee
    Science in China Series A: Mathematics, 1999, 42 : 1 - 12
  • [7] ON TIGHT CYCLES IN HYPERGRAPHS
    Huang, Hao
    Ma, Jie
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (01) : 230 - 237
  • [8] Paths and cycles of hypergraphs
    Wang, JF
    Lee, TT
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 1999, 42 (01): : 1 - 12
  • [9] Paths and cycles of hypergraphs
    王建方
    Tony T.Lee
    Science China Mathematics, 1999, (01) : 1 - 12
  • [10] On the notion of cycles in hypergraphs
    Jegou, Philippe
    Ndiaye, Samba Ndojh
    DISCRETE MATHEMATICS, 2009, 309 (23-24) : 6535 - 6543