Reduction of hexachlorobenzene by nanoscale zero-valent iron: Kinetics, pH effect, and degradation mechanism

被引:143
|
作者
Shih, Yang-hsin [1 ]
Hsu, Chung-yu [1 ]
Su, Yuh-fan [1 ]
机构
[1] Natl Taiwan Univ, Dept Agr Chem, Taipei 106, Taiwan
关键词
Nanoscale zero-valent iron; Hexachlorobenzene; Activation energy; pH; Dechlorination; ZEROVALENT IRON; DECHLORINATION KINETICS; PARTICLES; DEHALOGENATION; PESTICIDES; NITRATE; WOMEN; TCE; FE;
D O I
10.1016/j.seppur.2010.10.015
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Nanoscale zero-valent iron (NZVI) particles were synthesized in the laboratory and used to investigate the reduction kinetics and degradation mechanisms of hexachlorobenzene (HCB) and the environmental effects. The rapid degradation of HCB by NZVI follows pseudo-first-order kinetics. Increasing the dose of NZVI particles enhanced the dechlorination rates of HCB. With an increase in temperature, the degradation rate increases. The activation energy was determined to be 16.6 kJ mol(-1). The dechlorination rate constants of HCB linearly increased from 0.052 to 0.12 h(-1) with decreasing aqueous pH values from 9.2 to 3.2. The dehalogenation of HCB with NZVI is favorable under acid conditions. The degradation kinetics and efficiency increased with increasing water content in solutions, indicating that hydrogen ion was also one of the driving forces of reaction. The stepwise dechlorination pathway of HCB with NZVI was the dominant reaction. These findings indicate high temperature and acid conditions are beneficial to the catalytic dechlorination of polychlorinated benzenes with NZVI and it potential application into the environment. Crown Copyright (c) 2010 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:268 / 274
页数:7
相关论文
共 50 条
  • [21] Bioinhibitory effect of hydrogenotrophic bacteria on nitrate reduction by nanoscale zero-valent iron
    An, Yi
    Dong, Qi
    Zhang, Keqiang
    CHEMOSPHERE, 2014, 103 : 86 - 91
  • [22] Microbial reduction of nitrate in the presence of nanoscale zero-valent iron
    Shin, Kyung-Hee
    Cha, Daniel K.
    CHEMOSPHERE, 2008, 72 (02) : 257 - 262
  • [23] Kinetics of the chemical reduction of nitrate by zero-valent iron
    Rodriguez-Maroto, J. M.
    Garcia-Herruzo, F.
    Garcia-Rubio, A.
    Gomez-Lahoz, C.
    Vereda-Alonso, C.
    CHEMOSPHERE, 2009, 74 (06) : 804 - 809
  • [24] Effect of pH on the dissolution kinetics of zero-valent iron in the presence of EDDHA and EDTA
    Lodge, Alexander
    Pierce, Eric M.
    Wellman, D. M.
    Rodriguez, Elsa A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233 : 520 - 520
  • [25] Effect of operating parameters on trichloroethylene degradation by extended release of nanoscale zero-valent iron
    Chen, Chiu-Wen
    Chen, Te-San
    Hsia, Kuo-Feng
    Chen, Chih-Feng
    Dong, Cheng-Di
    DESALINATION AND WATER TREATMENT, 2016, 57 (57) : 27794 - 27803
  • [26] Kinetics of reductive degradation of azo dye by zero-valent iron
    Bigg, T
    Judd, SJ
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2001, 79 (B5) : 297 - 303
  • [27] Biochar supported nanoscale zero-valent iron for the kinetics removal and mechanism of decabromodiphenyl ethane in the sediment
    Lu, Cong
    Zhao, Xuan
    Qiao, Zhihua
    Luo, Kailun
    Zhou, Shanqi
    Fu, Mengru
    Peng, Cheng
    Zhang, Wei
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (37) : 86821 - 86829
  • [28] Corrosion behaviors and kinetics of nanoscale zero-valent iron in water: A review
    Tang C.
    Wang X.
    Zhang Y.
    Liu N.
    Hu X.
    Journal of Environmental Sciences (China), 2024, 135 : 391 - 406
  • [29] Corrosion behaviors and kinetics of nanoscale zero-valent iron in water: A review
    Tang, Chenliu
    Wang, Xingyu
    Zhang, Yufei
    Liu, Nuo
    Hu, Xiang
    JOURNAL OF ENVIRONMENTAL SCIENCES, 2024, 135 : 391 - 406
  • [30] Adsorption kinetics of As (III) from groundwater by nanoscale zero-valent iron
    Huang, Y.-Y. (yuanyinghuang304@163.com), 1600, China University of Geosciences (37):