Biochar supported nanoscale zero-valent iron for the kinetics removal and mechanism of decabromodiphenyl ethane in the sediment

被引:0
|
作者
Lu, Cong [1 ]
Zhao, Xuan [1 ]
Qiao, Zhihua [1 ]
Luo, Kailun [1 ]
Zhou, Shanqi [1 ]
Fu, Mengru [1 ]
Peng, Cheng [1 ,2 ]
Zhang, Wei [1 ]
机构
[1] East China Univ Sci & Technol, Sch Resource & Environm Engn, State Environm Protect Key Lab Environm Risk Asses, Shanghai 200237, Peoples R China
[2] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
DBDPE; BC; nZVI; Sediment; Removal efficiency; Degradation mechanism; BROMINATED FLAME RETARDANTS; POLYBROMINATED DIPHENYL ETHERS; SOIL; SORPTION; BIOACCUMULATION; DEGRADATION; ADSORPTION; REACTIVITY; WATER; LEAD;
D O I
10.1007/s11356-023-27690-y
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The extensive applications of decabromodiphenyl ethane (DBDPE), a novel brominated flame retardant, have induced its accumulation in sediment, which may have a great negative impact on the ecological environment. In this work, the biochar/nano-zero-valent iron materials (BC/nZVI) were synthesized to remove DBDPE in the sediment. Batch experiments were carried out to investigate the influencing factors of the removal efficiency, and kinetic model simulation and thermodynamic parameter calculation were performed. The degradation products and mechanisms were probed. The results indicated that the addition of 0.10 g & BULL;g(-1) BC/nZVI to the sediment with an initial concentration of 10 mg & BULL;kg(-1) DBDPE could remove 43.73% of DBDPE during 24 h. The water content of the sediment was a critical factor in the removal of DBDPE, which was optimal at 1:2 of sediment to water. The removal efficiency and reaction rate were enhanced by increasing dosage, water content, and reaction temperature or decreasing initial concentration of DBDPE based on the fitting results of the quasi-first-order kinetic model. Additionally, the calculated thermodynamic parameters suggested that the removal process was a spontaneously and reversibly endothermic reaction. The degradation products were further determined by GC-MS, and the mechanisms were presumed that DBDPE was debrominated to produce octabromodiphenyl ethane (octa-BDPE). This study provides a potential remediation method for highly DBDPE-contaminated sediment by using BC/nZVI.
引用
收藏
页码:86821 / 86829
页数:9
相关论文
共 50 条
  • [1] Biochar supported nanoscale zero-valent iron for the kinetics removal and mechanism of decabromodiphenyl ethane in the sediment
    Cong Lu
    Xuan Zhao
    Zhihua Qiao
    Kailun Luo
    Shanqi Zhou
    Mengru Fu
    Cheng Peng
    Wei Zhang
    Environmental Science and Pollution Research, 2023, 30 : 86821 - 86829
  • [2] Mechanism of phosphate removal from aqueous solutions by biochar supported nanoscale zero-valent iron
    Ma, Fengfeng
    Zhao, Baowei
    Diao, Jingru
    Jiang, Yufeng
    Zhang, Jian
    RSC ADVANCES, 2020, 10 (64) : 39217 - 39225
  • [3] Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution
    Dong, Haoran
    Zhang, Cong
    Hou, Kunjie
    Cheng, Yujun
    Deng, Junmin
    Jiang, Zhao
    Tang, Lin
    Zeng, Guangming
    SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 188 : 188 - 196
  • [4] Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene
    Gaoling Wei
    Jinhua Zhang
    Jinqiu Luo
    Huajian Xue
    Deyin Huang
    Zhiyang Cheng
    Xinbai Jiang
    Frontiers of Environmental Science & Engineering, 2019, 13
  • [5] Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene
    Wei, Gaoling
    Zhang, Jinhua
    Luo, Jinqiu
    Xue, Huajian
    Huang, Deyin
    Cheng, Zhiyang
    Jiang, Xinbai
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2019, 13 (04)
  • [6] Biochar Supported Nanoscale Zero-valent Iron Composites for the Removal of Petroleum from Wastewater
    Qin Feifei
    Xu Wenfei
    Hao Boyu
    Yin Linghao
    Song Jiayu
    Zhang Xiuxia
    CHINA PETROLEUM PROCESSING & PETROCHEMICAL TECHNOLOGY, 2021, 23 (04) : 47 - 57
  • [7] Biochar Supported Nanoscale Zero-valent Iron Composites for the Removal of Petroleum from Wastewater
    Qin Feifei
    Xu Wenfei
    Hao Boyu
    Yin Linghao
    Song Jiayu
    Zhang Xiuxia
    China Petroleum Processing & Petrochemical Technology, 2021, 23 (04) : 47 - 57
  • [8] The degradation of decabromodiphenyl ether in the e-waste site by biochar supported nanoscale zero-valent iron/persulfate
    Li, Haihong
    Zhu, Fang
    He, Siying
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2019, 183
  • [9] Enhanced removal of estrogens from simulated wastewater by biochar supported nanoscale zero-valent iron: performance and mechanism
    Yuping Han
    Huanhuan Xu
    Guangzhou Wang
    Peiyuan Deng
    Lili Feng
    Yaoshen Fan
    Jiaxin Zhang
    Biochar, 5
  • [10] Enhanced removal of estrogens from simulated wastewater by biochar supported nanoscale zero-valent iron: performance and mechanism
    Han, Yuping
    Xu, Huanhuan
    Wang, Guangzhou
    Deng, Peiyuan
    Feng, Lili
    Fan, Yaoshen
    Zhang, Jiaxin
    BIOCHAR, 2023, 5 (01)