Exponential attractor for the 3D Ginzburg-Landau type equation

被引:13
|
作者
Lue, Shujuan
Lu, Qishao [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Math, Beijing 100083, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, LMIB, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Ginzburg-Landau type equation; global attractor; exponential attractor; Hausdorff dimension; fractal dimension;
D O I
10.1016/j.na.2006.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a complex Ginzburg-Landau type equation with periodic initial value condition in three spatial dimensions. Sufficient conditions for existence and uniqueness of global solutions are obtained by uniform a priori estimates of solutions. Furthermore, the existence of a global attractor with finite Hausdorff and fractal dimensions is proved. Finally, the existence of the exponential attractor is proved. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3116 / 3135
页数:20
相关论文
共 50 条
  • [31] FOURIER SPECTRAL APPROXIMATIONS TO THE DYNAMICS OF 3D FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATION
    Lu, Hong
    Lu, Shujuan
    Zhang, Mingji
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (05) : 2539 - 2564
  • [32] Large deviations for stochastic 3D cubic Ginzburg-Landau equation with multiplicative noise
    Yang, Lian
    Pu, Xueke
    APPLIED MATHEMATICS LETTERS, 2015, 48 : 41 - 46
  • [33] Controllability of the Ginzburg-Landau equation
    Rosier, Lionel
    Zhang, Bing-Yu
    COMPTES RENDUS MATHEMATIQUE, 2008, 346 (3-4) : 167 - 172
  • [34] Dynamics of the 3-D fractional complex Ginzburg-Landau equation
    Lu, Hong
    Bates, Peter W.
    Lu, Shujuan
    Zhang, Mingji
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) : 5276 - 5301
  • [35] Invariant Manifolds and Global Attractor of the Ginzburg-Landau Integro-Differential Equation
    Kulikov, A. N.
    Kulikov, D. A.
    DIFFERENTIAL EQUATIONS, 2022, 58 (11) : 1499 - 1513
  • [36] CONVERGENCE OF A CHAOTIC ATTRACTOR WITH INCREASED SPATIAL-RESOLUTION OF THE GINZBURG-LANDAU EQUATION
    JOLLY, MS
    TEMAM, R
    XIONG, C
    CHAOS SOLITONS & FRACTALS, 1995, 5 (10) : 1833 - 1845
  • [37] Remarks on nonminimizing solutions of a Ginzburg-Landau type equation
    Lab. d'Analyse Numérique, Tour 55-65, Univ. Pierre et Marie Curie, 4, place Jussieu, F-75252 Paris Cedex 05, France
    Asymptotic Anal, 2 (199-215):
  • [38] A LIOUVILLE THEOREM FOR AN INTEGRAL EQUATION OF THE GINZBURG-LANDAU TYPE
    Lei, Yutian
    Xu, Xin
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (01): : 231 - 245
  • [39] Remarks on nonminimizing solutions of a Ginzburg-Landau type equation
    Comte, M
    Mironescu, P
    ASYMPTOTIC ANALYSIS, 1996, 13 (02) : 199 - 215
  • [40] Ergodicity and exponential mixing of the real Ginzburg-Landau equation with a degenerate noise
    Peng, Xuhui
    Huang, Jianhua
    Zhang, Rangrang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) : 3686 - 3720