Exponential attractor for the 3D Ginzburg-Landau type equation

被引:13
|
作者
Lue, Shujuan
Lu, Qishao [1 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Dept Math, Beijing 100083, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, LMIB, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Ginzburg-Landau type equation; global attractor; exponential attractor; Hausdorff dimension; fractal dimension;
D O I
10.1016/j.na.2006.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a complex Ginzburg-Landau type equation with periodic initial value condition in three spatial dimensions. Sufficient conditions for existence and uniqueness of global solutions are obtained by uniform a priori estimates of solutions. Furthermore, the existence of a global attractor with finite Hausdorff and fractal dimensions is proved. Finally, the existence of the exponential attractor is proved. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3116 / 3135
页数:20
相关论文
共 50 条
  • [21] TRAVELING WAVE SOLUTIONS AND ITS STABILITY FOR 3D GINZBURG-LANDAU TYPE EQUATION
    Lue, Shujuan
    Gan, Chunbiao
    Wang, Baohua
    Qian, Linning
    Li, Meisheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (02): : 507 - 527
  • [22] THE GINZBURG-LANDAU MANIFOLD IS AN ATTRACTOR
    ECKHAUS, W
    JOURNAL OF NONLINEAR SCIENCE, 1993, 3 (03) : 329 - 348
  • [23] Remarks on an Equation of the Ginzburg-Landau Type
    Wang, Bei
    FILOMAT, 2019, 33 (18) : 5913 - 5917
  • [24] RANDOM ATTRACTOR FOR FRACTIONAL GINZBURG-LANDAU EQUATION WITH MULTIPLICATIVE NOISE
    Lu, Hong
    Lu, Shujuan
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (02): : 435 - 450
  • [25] THE GINZBURG-LANDAU EQUATION
    ADOMIAN, G
    MEYERS, RE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 29 (03) : 3 - 4
  • [26] Convergence of a chaotic attractor with increased spatial resolution of the Ginzburg-Landau equation
    Jolly, M.S.
    Temam, R.
    Xiong, C.
    Chaos, Solitons and Fractals, 1995, 5 (10):
  • [27] A remark on the dimension of the attractor for the Dirichlet problem of the complex Ginzburg-Landau equation
    Karachalios, Nikos I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (08)
  • [28] EXACT LYAPUNOV DIMENSION OF THE UNIVERSAL ATTRACTOR FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    DOERING, CR
    GIBBON, JD
    HOLM, DD
    NICOLAENKO, B
    PHYSICAL REVIEW LETTERS, 1987, 59 (26) : 2911 - 2914
  • [29] Using the complex Ginzburg-Landau equation for digital inpainting in 2D and 3D
    Grossauer, H
    Scherzer, O
    SCALE SPACE METHODS IN COMPUTER VISION, PROCEEDINGS, 2003, 2695 : 225 - 236
  • [30] DYNAMICS OF THE 3D FRACTIONAL GINZBURG-LANDAU EQUATION WITH MULTIPLICATIVE NOISE ON AN UNBOUNDED DOMAIN
    Lu, Hong
    Bates, Peter W.
    Lu, Shujuan
    Zhang, Mingji
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2016, 14 (01) : 273 - 295