BERTRAND CURVES AND RAZZABONI SURFACES IN MINKOWSKI 3-SPACE
被引:2
|
作者:
Xu, Chuanyou
论文数: 0引用数: 0
h-index: 0
机构:
Fuyang Teachers Coll, Sch Math & Computat Sci, Fuyang 236041, Peoples R ChinaFuyang Teachers Coll, Sch Math & Computat Sci, Fuyang 236041, Peoples R China
Xu, Chuanyou
[1
]
Cao, Xifang
论文数: 0引用数: 0
h-index: 0
机构:
Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R ChinaFuyang Teachers Coll, Sch Math & Computat Sci, Fuyang 236041, Peoples R China
Cao, Xifang
[2
]
Zhu, Peng
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Jiangsu, Peoples R ChinaFuyang Teachers Coll, Sch Math & Computat Sci, Fuyang 236041, Peoples R China
Zhu, Peng
[3
]
机构:
[1] Fuyang Teachers Coll, Sch Math & Computat Sci, Fuyang 236041, Peoples R China
[2] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[3] Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Jiangsu, Peoples R China
In this paper, we generalize some results about Bertrand curves and Razzaboni surfaces in Euclidean 3-space to the case that the ambient space is Minkowski 3-space. Our discussion is divided into three different cases, i.e., the parent Bertrand curve being timelike, spacelike with timelike principal normal, and spacelike with spacelike principal normal. For each case, first we show that Razzaboni surfaces and their mates are related by a reciprocal transformation; then we give Backlund transformations for Bertrand curves and for Razzaboni surfaces; finally we prove that the reciprocal and Backlund transformations on Razzaboni surfaces commute.
机构:
Sapporo Sci Ctr, Atsubetsu Ku, Atsubetsu Chuo 1-5-2-20, Sapporo, Hokkaido 0040051, JapanSapporo Sci Ctr, Atsubetsu Ku, Atsubetsu Chuo 1-5-2-20, Sapporo, Hokkaido 0040051, Japan
Ito, Noriaki
Izumiya, Shyuichi
论文数: 0引用数: 0
h-index: 0
机构:
Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, JapanSapporo Sci Ctr, Atsubetsu Ku, Atsubetsu Chuo 1-5-2-20, Sapporo, Hokkaido 0040051, Japan