BERTRAND CURVES AND RAZZABONI SURFACES IN MINKOWSKI 3-SPACE

被引:2
|
作者
Xu, Chuanyou [1 ]
Cao, Xifang [2 ]
Zhu, Peng [3 ]
机构
[1] Fuyang Teachers Coll, Sch Math & Computat Sci, Fuyang 236041, Peoples R China
[2] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
[3] Jiangsu Univ Technol, Sch Math & Phys, Changzhou 213001, Jiangsu, Peoples R China
关键词
Bertrand curve; Razzaboni surface; Minkowski; 3-space; reciprocal transformation; Backlund transformation; SPACE;
D O I
10.4134/BKMS.2015.52.2.377
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we generalize some results about Bertrand curves and Razzaboni surfaces in Euclidean 3-space to the case that the ambient space is Minkowski 3-space. Our discussion is divided into three different cases, i.e., the parent Bertrand curve being timelike, spacelike with timelike principal normal, and spacelike with spacelike principal normal. For each case, first we show that Razzaboni surfaces and their mates are related by a reciprocal transformation; then we give Backlund transformations for Bertrand curves and for Razzaboni surfaces; finally we prove that the reciprocal and Backlund transformations on Razzaboni surfaces commute.
引用
收藏
页码:377 / 394
页数:18
相关论文
共 50 条
  • [31] Evolutes of plane curves and null curves in Minkowski 3-space
    Nolasco B.
    Pacheco R.
    [J]. Journal of Geometry, 2017, 108 (1) : 195 - 214
  • [32] A new approach to Bertrand curves in Euclidean 3-space
    Çetin Camci
    Ali Uçum
    Kazım İlarslan
    [J]. Journal of Geometry, 2020, 111
  • [33] Geometry of Hasimoto Surfaces in Minkowski 3-Space
    Erdogdu, Melek
    Ozdemir, Mustafa
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2014, 17 (1-2) : 169 - 181
  • [34] Geometry of Hasimoto Surfaces in Minkowski 3-Space
    Melek Erdoğdu
    Mustafa Özdemir
    [J]. Mathematical Physics, Analysis and Geometry, 2014, 17 : 169 - 181
  • [35] A new approach to Bertrand curves in Euclidean 3-space
    Camci, Cetin
    Ucum, Ali
    Ilarslan, Kazim
    [J]. JOURNAL OF GEOMETRY, 2020, 111 (03)
  • [36] THE NATURAL LIFT CURVES FOR THE SPHERICAL INDICATRICES OF THE TIMELIKE-SPACELIKE BERTRAND COUPLE IN MINKOWSKI 3-SPACE
    Bilici, Mustafa
    Ergun, Evren
    Caliskan, Mustafa
    [J]. JOURNAL OF SCIENCE AND ARTS, 2018, (04): : 799 - 812
  • [37] Surfaces in Minkowski 3-space and harmonic maps
    Inoguchi, JI
    [J]. HARMONIC MORPHISMS, HARMONIC MAPS, AND RELATED TOPICS, 2000, 413 : 249 - 270
  • [38] Ruled Weingarten surfaces in Minkowski 3-space
    Franki Dillen
    Wolfgang Kühnel
    [J]. manuscripta mathematica, 1999, 98 : 307 - 320
  • [39] Spacelike Circular Surfaces in Minkowski 3-Space
    Li, Yanlin
    Aldossary, Maryam T.
    Abdel-Baky, Rashad A.
    [J]. SYMMETRY-BASEL, 2023, 15 (01):
  • [40] TIMELIKE SURFACES OF EVOLUTION IN MINKOWSKI 3-SPACE
    Yavuz, Yunus
    Yazla, Aziz
    Sariaydin, Muhammed T.
    [J]. JOURNAL OF SCIENCE AND ARTS, 2020, (03): : 611 - 626