An h-adaptive thermo-mechanical phase field model for fracture

被引:137
|
作者
Badnava, Hojjat [1 ]
Msekh, Mohammed A. [2 ]
Etemadi, Elahe [3 ]
Rabczuk, Timon [4 ]
机构
[1] Behbahan Khatam Alanbia Univ Technol, Dept Mech Engn, Khuzestan, Iran
[2] Univ Babylon, Coll Engn, Civil Engn Dept, Babylon, Iraq
[3] Semnan Univ, Fac Engn, Semnan, Iran
[4] Bauhaus Univ Weimar, Inst Struct Mech, Fac Civil Engn, Weimar, Germany
关键词
Phase field model; Thermal induced cracks; Brittle fracture; Thermo-mechanical fracture; Mesh refinement; SCREENED POISSON EQUATION; ARBITRARY EVOLVING CRACKS; DUAL-HORIZON PERIDYNAMICS; DYNAMIC BRITTLE-FRACTURE; GRADIENT-ENHANCED MODEL; LOCAL MESH REFINEMENT; SHAPE-MEMORY ALLOYS; NUMERICAL IMPLEMENTATION; ABAQUS IMPLEMENTATION; PRESSURIZED FRACTURES;
D O I
10.1016/j.finel.2017.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, brittle fracture and thermo-mechanical induced cracks are simulated using a phase field model in 2D and 3D continua in homogeneous and heterogeneous materials. The phase field model for fracture has specific regulations regarding the finite element mesh size. Therefore, a mesh refinement algorithm by adopting a predictor-corrector mesh refinement strategy is used in both applications of mechanical and thermo-mechanical fracture models. Several mechanical and thermo-mechanical examples are presented in this work to prove the capability of the proposed numerical implementation. The multi-field problems are solved using a staggered solution algorithm with and without the parallelization of the system equations. The simulation times of the tested specimens are compared for different meshing criteria, adaptive refinement, pre-refinement of the expected crack path, and the global refinement of the specimen.
引用
收藏
页码:31 / 47
页数:17
相关论文
共 50 条
  • [21] THERMO-MECHANICAL MODEL FOR CONCRETE PAVEMENT
    Vesely, Jakub
    Smilauer, Vit
    NANO & MACRO MECHANICS (NMM 2020), 2021, 30 : 121 - 125
  • [22] Isogeometric analysis of a dynamic thermo-mechanical phase-field model applied to shape memory alloys
    Dhote, R. P.
    Gomez, H.
    Melnik, R. N. V.
    Zu, J.
    COMPUTATIONAL MECHANICS, 2014, 53 (06) : 1235 - 1250
  • [23] Isogeometric analysis of a dynamic thermo-mechanical phase-field model applied to shape memory alloys
    R. P. Dhote
    H. Gomez
    R. N. V. Melnik
    J. Zu
    Computational Mechanics, 2014, 53 : 1235 - 1250
  • [24] A Thermo-mechanical cohesive zone model
    I. Özdemir
    W. A. M. Brekelmans
    M. G. D. Geers
    Computational Mechanics, 2010, 46 : 735 - 745
  • [25] Model solutions for thermo-mechanical load
    Deger, Yasar
    Engineering Technology, 2003, 6 (10): : 38 - 39
  • [26] A Thermo-mechanical cohesive zone model
    Ozdemir, I.
    Brekelmans, W. A. M.
    Geers, M. G. D.
    COMPUTATIONAL MECHANICS, 2010, 46 (05) : 735 - 745
  • [27] Thermo-mechanical fatigue and fracture of INCO718
    Evans, W. J.
    Screech, J. E.
    Williams, S. J.
    INTERNATIONAL JOURNAL OF FATIGUE, 2008, 30 (02) : 257 - 267
  • [28] Fatigue and fracture retardation using a thermo-mechanical method
    Lam, YC
    ADVANCES IN FRACTURE RESEARCH, VOLS 1-6, 1997, : 1273 - 1284
  • [29] Thermo-mechanical shock fracture analysis by meshless method
    Memari, Amin
    Azar, Mohammad Reza Khoshravan
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2019, 102 : 171 - 192
  • [30] A Thermo-mechanical gradient enhanced damage method for fracture
    Subrato Sarkar
    I. V. Singh
    B. K. Mishra
    Computational Mechanics, 2020, 66 : 1399 - 1426