An h-adaptive thermo-mechanical phase field model for fracture

被引:137
|
作者
Badnava, Hojjat [1 ]
Msekh, Mohammed A. [2 ]
Etemadi, Elahe [3 ]
Rabczuk, Timon [4 ]
机构
[1] Behbahan Khatam Alanbia Univ Technol, Dept Mech Engn, Khuzestan, Iran
[2] Univ Babylon, Coll Engn, Civil Engn Dept, Babylon, Iraq
[3] Semnan Univ, Fac Engn, Semnan, Iran
[4] Bauhaus Univ Weimar, Inst Struct Mech, Fac Civil Engn, Weimar, Germany
关键词
Phase field model; Thermal induced cracks; Brittle fracture; Thermo-mechanical fracture; Mesh refinement; SCREENED POISSON EQUATION; ARBITRARY EVOLVING CRACKS; DUAL-HORIZON PERIDYNAMICS; DYNAMIC BRITTLE-FRACTURE; GRADIENT-ENHANCED MODEL; LOCAL MESH REFINEMENT; SHAPE-MEMORY ALLOYS; NUMERICAL IMPLEMENTATION; ABAQUS IMPLEMENTATION; PRESSURIZED FRACTURES;
D O I
10.1016/j.finel.2017.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, brittle fracture and thermo-mechanical induced cracks are simulated using a phase field model in 2D and 3D continua in homogeneous and heterogeneous materials. The phase field model for fracture has specific regulations regarding the finite element mesh size. Therefore, a mesh refinement algorithm by adopting a predictor-corrector mesh refinement strategy is used in both applications of mechanical and thermo-mechanical fracture models. Several mechanical and thermo-mechanical examples are presented in this work to prove the capability of the proposed numerical implementation. The multi-field problems are solved using a staggered solution algorithm with and without the parallelization of the system equations. The simulation times of the tested specimens are compared for different meshing criteria, adaptive refinement, pre-refinement of the expected crack path, and the global refinement of the specimen.
引用
收藏
页码:31 / 47
页数:17
相关论文
共 50 条
  • [11] Coupled thermo-mechanical phase field modeling for shear ductile fracture at high strain rate and temperature
    Gu, Tao
    Wang, Zhanjiang
    Du, Linyi
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2024, 106
  • [12] Thermo-mechanical model of spindles
    Holkup, T.
    Cao, H.
    Kolar, P.
    Altintas, Y.
    Zeleny, J.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2010, 59 (01) : 365 - 368
  • [13] Meshfree simulations of thermo-mechanical ductile fracture
    Simkins, D. C.
    Li, S.
    COMPUTATIONAL MECHANICS, 2006, 38 (03) : 235 - 249
  • [14] Meshfree simulations of thermo-mechanical ductile fracture
    D. C. Simkins
    S. Li
    Computational Mechanics, 2006, 38 : 235 - 249
  • [15] Finite Element Simulation of Thermo-Mechanical Model with Phase Change
    Vasilyeva, Maria
    Ammosov, Dmitry
    Vasil'ev, Vasily
    COMPUTATION, 2021, 9 (01) : 1 - 31
  • [16] An h-adaptive boundary element method for fracture mechanics
    Chao, RM
    Lee, SY
    Kuo, JC
    BOUNDARY ELEMENT TECHNOLOGY XIII: INCORPORATING COMPUTATIONAL METHODS AND TESTING FOR ENGINEERING INTEGRITY, 1999, 2 : 485 - 494
  • [17] Phase-field modeling of brittle anisotropic fracture in polycrystalline materials under combined thermo-mechanical loadings
    Kiran, Raj
    Choudhary, Krishana
    Nguyen-Thanh, Nhon
    COMPUTERS & STRUCTURES, 2025, 308
  • [18] Phase-field modelling of the thermo-mechanical properties of carbon steels
    Seol, DJ
    Oh, KH
    Cho, JW
    Lee, JE
    Yoon, US
    ACTA MATERIALIA, 2002, 50 (09) : 2259 - 2268
  • [19] Thermo-mechanical analysis with phase transformations
    Geijselaers, HJM
    Huétink, H
    MATERIALS PROCESSING AND DESIGN: MODELING, SIMULATION AND APPLICATIONS, PTS 1 AND 2, 2004, 712 : 1508 - 1513
  • [20] Damage prediction of sintered α-SiC using thermo-mechanical coupled fracture model
    Sun, Jason
    Chen, Yu
    Marziale, Joseph J.
    Walker, Eric A.
    Salac, David
    Chen, James
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2023, 106 (10) : 6036 - 6050