Products of k atoms in Krull monoids

被引:5
|
作者
Fan, Yushuang [1 ]
Zhong, Qinghai [2 ]
机构
[1] China Univ Geosci, Math Coll, Beijing, Peoples R China
[2] Graz Univ, Inst Math & Sci Comp, NAWI Graz, Heinrichstr 36, A-8010 Graz, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2016年 / 181卷 / 04期
基金
奥地利科学基金会;
关键词
Non-unique factorizations; Sets of lengths; Krull monoids; Zero-sum sequences; DAVENPORT CONSTANT; DECOMPOSITIONS; FACTORIZATION; MODULES; DOMAINS;
D O I
10.1007/s00605-016-0942-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a Krull monoid with finite class group G such that every class contains a prime divisor. For , let denote the set of all with the following property: There exist atoms such that . It is well-known that the sets are finite intervals whose maxima depend only on G. If , then for every . Suppose that . An elementary counting argument shows that and where is the Davenport constant. In [11] it was proved that for cyclic groups we have for every . In the present paper we show that (under a reasonable condition on the Davenport constant) for every noncyclic group there exists a such that for every . This confirms a conjecture of A. Geroldinger, D. Grynkiewicz, and P. Yuan in [13].
引用
收藏
页码:779 / 795
页数:17
相关论文
共 50 条
  • [1] Products of k atoms in Krull monoids
    Yushuang Fan
    Qinghai Zhong
    Monatshefte für Mathematik, 2016, 181 : 779 - 795
  • [2] Strong atoms in Krull monoids
    Angermueller, Gerhard
    SEMIGROUP FORUM, 2020, 101 (01) : 11 - 18
  • [3] Strong atoms in Krull monoids
    Gerhard Angermüller
    Semigroup Forum, 2020, 101 : 11 - 18
  • [4] Products of two atoms in Krull monoids and arithmetical characterizations of class groups
    Baginski, Paul
    Geroldinger, Alfred
    Grynkiewicz, David J.
    Philipp, Andreas
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1244 - 1268
  • [5] DIVISOR SEQUENCES OF ATOMS IN KRULL MONOIDS
    Baeth, Nicholas R.
    Bell, Terri
    Gibbons, Courtney R.
    Striuli, Janet
    JOURNAL OF COMMUTATIVE ALGEBRA, 2022, 14 (01) : 1 - 17
  • [6] Strong atoms in monadically Krull monoids
    Angermuller, Gerhard
    SEMIGROUP FORUM, 2022, 104 (01) : 10 - 17
  • [7] Correction to: Strong atoms in monadically Krull monoids
    Gerhard Angermüller
    Semigroup Forum, 2022, 104 (1) : 211 - 211
  • [8] On transfer Krull monoids
    Aqsa Bashir
    Andreas Reinhart
    Semigroup Forum, 2022, 105 : 73 - 95
  • [9] On transfer Krull monoids
    Bashir, Aqsa
    Reinhart, Andreas
    SEMIGROUP FORUM, 2022, 105 (01) : 73 - 95
  • [10] Some characterizations of Krull monoids
    Kim, Hwankoo
    Kim, Myeong Og
    Park, Young Soo
    ALGEBRA COLLOQUIUM, 2007, 14 (03) : 469 - 477