DIVISOR SEQUENCES OF ATOMS IN KRULL MONOIDS

被引:0
|
作者
Baeth, Nicholas R. [1 ]
Bell, Terri [2 ]
Gibbons, Courtney R. [3 ]
Striuli, Janet [4 ]
机构
[1] Franklin & Marshall Coll, Dept Math, Lancaster, PA 17604 USA
[2] South Puget Sound Community Coll, Math Dept, Olympia, WA USA
[3] Hamilton Coll, Dept Math & Stat, Clinton, NY 13323 USA
[4] Fairfield Univ, Dept Math, Fairfield, CT 06430 USA
关键词
Krull monoids; factorizations; irreducible elements (atoms); divisor sequences;
D O I
10.1216/jca.2022.14.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The divisor sequence of an irreducible element (atom) a of a reduced monoid H is the sequence (s(n))(n is an element of N) where, for each positive integer n, s(n) denotes the number of distinct irreducible divisors of an. We investigate which sequences of positive integers can be realized as divisor sequences of irreducible elements in Krull monoids. In particular, this gives a means for studying nonunique direct-sum decompositions of modules over local Noetherian rings for which the Krull-Remak-Schmidt property fails.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] Strong atoms in Krull monoids
    Angermueller, Gerhard
    SEMIGROUP FORUM, 2020, 101 (01) : 11 - 18
  • [2] Strong atoms in Krull monoids
    Gerhard Angermüller
    Semigroup Forum, 2020, 101 : 11 - 18
  • [3] Strong atoms in monadically Krull monoids
    Angermuller, Gerhard
    SEMIGROUP FORUM, 2022, 104 (01) : 10 - 17
  • [4] Products of k atoms in Krull monoids
    Fan, Yushuang
    Zhong, Qinghai
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (04): : 779 - 795
  • [5] Products of k atoms in Krull monoids
    Yushuang Fan
    Qinghai Zhong
    Monatshefte für Mathematik, 2016, 181 : 779 - 795
  • [6] Correction to: Strong atoms in monadically Krull monoids
    Gerhard Angermüller
    Semigroup Forum, 2022, 104 (1) : 211 - 211
  • [7] NON-COMMUTATIVE KRULL MONOIDS: A DIVISOR THEORETIC APPROACH AND THEIR ARITHMETIC
    Geroldinger, Alfred
    OSAKA JOURNAL OF MATHEMATICS, 2013, 50 (02) : 503 - 539
  • [8] An inequality concerning the elasticity of Krull monoids with divisor class group Z(p)
    Chapman, Scott T.
    Smith, William W.
    RICERCHE DI MATEMATICA, 2007, 56 (01) : 107 - 117
  • [9] On the Delta set and catenary degree of Krull monoids with infinite cyclic divisor class group
    Baginski, Paul
    Chapman, S. T.
    Rodriguez, Ryan
    Schaeffer, George J.
    She, Yiwei
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (08) : 1334 - 1339
  • [10] Products of two atoms in Krull monoids and arithmetical characterizations of class groups
    Baginski, Paul
    Geroldinger, Alfred
    Grynkiewicz, David J.
    Philipp, Andreas
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1244 - 1268