Products of k atoms in Krull monoids

被引:5
|
作者
Fan, Yushuang [1 ]
Zhong, Qinghai [2 ]
机构
[1] China Univ Geosci, Math Coll, Beijing, Peoples R China
[2] Graz Univ, Inst Math & Sci Comp, NAWI Graz, Heinrichstr 36, A-8010 Graz, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2016年 / 181卷 / 04期
基金
奥地利科学基金会;
关键词
Non-unique factorizations; Sets of lengths; Krull monoids; Zero-sum sequences; DAVENPORT CONSTANT; DECOMPOSITIONS; FACTORIZATION; MODULES; DOMAINS;
D O I
10.1007/s00605-016-0942-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a Krull monoid with finite class group G such that every class contains a prime divisor. For , let denote the set of all with the following property: There exist atoms such that . It is well-known that the sets are finite intervals whose maxima depend only on G. If , then for every . Suppose that . An elementary counting argument shows that and where is the Davenport constant. In [11] it was proved that for cyclic groups we have for every . In the present paper we show that (under a reasonable condition on the Davenport constant) for every noncyclic group there exists a such that for every . This confirms a conjecture of A. Geroldinger, D. Grynkiewicz, and P. Yuan in [13].
引用
收藏
页码:779 / 795
页数:17
相关论文
共 50 条
  • [31] On products of k atoms
    Weidong Gao
    Alfred Geroldinger
    Monatshefte für Mathematik, 2009, 156 : 141 - 157
  • [32] SEMIGROUP-THEORETICAL CHARACTERIZATIONS OF ARITHMETICAL INVARIANTS WITH APPLICATIONS TO NUMERICAL MONOIDS AND KRULL MONOIDS
    Blanco, V.
    Garcia-Sanchez, P. A.
    Geroldinger, A.
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (04) : 1385 - 1414
  • [33] ELASTICITIES OF KRULL MONOIDS WITH INFINITE CYCLIC CLASS GROUP
    Zeng, Xiangneng
    Deng, Guixin
    JOURNAL OF COMMUTATIVE ALGEBRA, 2021, 13 (03) : 449 - 459
  • [34] On the arithmetic of Krull monoids with infinite cyclic class group
    Geroldinger, A.
    Grynkiewicz, D. J.
    Schaeffer, G. J.
    Schmid, W. A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (12) : 2219 - 2250
  • [35] A NEW CHARACTERIZATION OF HALF-FACTORIAL KRULL MONOIDS
    Baginski, Paul
    Kravitz, Ross
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2010, 9 (05) : 825 - 837
  • [36] On minimal distances in Krull monoids with infinite class group
    Chapman, S. T.
    Schmid, W. A.
    Smith, W. W.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 : 613 - 618
  • [37] HIGHER-ORDER CLASS GROUPS AND BLOCK MONOIDS OF KRULL MONOIDS WITH TORSION CLASS GROUP
    Schmid, Wolfgang A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2010, 9 (03) : 433 - 464
  • [38] The system of sets of lengths in Krull monoids under set addition
    Geroldinger, Alfred
    Schmid, Wolfgang A.
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (02) : 571 - 588
  • [39] Sets of minimal distances and characterizations of class groups of Krull monoids
    Zhong, Qinghai
    RAMANUJAN JOURNAL, 2018, 45 (03): : 719 - 737
  • [40] Sets of minimal distances and characterizations of class groups of Krull monoids
    Qinghai Zhong
    The Ramanujan Journal, 2018, 45 : 719 - 737