Stochastic seismic inversion using greedy annealed importance sampling

被引:13
|
作者
Xue, Yang [1 ]
Sen, Mrinal K. [1 ]
机构
[1] Univ Texas Austin, Inst Geophys, 8701 Mopac Blvd, Austin, TX 78712 USA
关键词
inverse theory; probability distribution; geophysical methods; WAVE-FORM INVERSION; GENETIC ALGORITHMS; MODEL;
D O I
10.1088/1742-2132/13/5/786
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A global optimization method called very fast simulated annealing (VFSA) inversion has been applied to seismic inversion. Here we address some of the limitations of VFSA by developing a new stochastic inference method, named greedy annealed importance sampling (GAIS). GAIS combines VFSA and greedy importance sampling (GIS), which uses a greedy search in the important regions located by VFSA, in order to attain fast convergence and provide unbiased estimation. We demonstrate the performance of GAIS with application to seismic inversion of field post- and pre-stack datasets. The results indicate that GAIS can improve lateral continuity of the inverted impedance profiles and provide better estimation of uncertainties than using VFSA alone. Thus this new hybrid method combining global and local optimization methods can be applied in seismic reservoir characterization and reservoir monitoring for accurate estimation of reservoir models and their uncertainties.
引用
收藏
页码:786 / 804
页数:19
相关论文
共 50 条
  • [1] Multivariate stochastic seismic inversion with adaptive sampling
    Siri, Maryam Hadavand
    Deutsch, Clayton V.
    GEOPHYSICS, 2018, 83 (05) : R429 - R448
  • [2] Greedy importance sampling
    Schuurmans, D
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 12, 2000, 12 : 596 - 602
  • [3] Annealed importance sampling
    Neal, RM
    STATISTICS AND COMPUTING, 2001, 11 (02) : 125 - 139
  • [4] Annealed importance sampling
    Radford M. Neal
    Statistics and Computing, 2001, 11 : 125 - 139
  • [5] Annealed importance sampling of peptides
    Lyman, Edward R.
    Zuckerman, Daniel M.
    BIOPHYSICAL JOURNAL, 2007, : 151A - 151A
  • [6] Annealed importance sampling of peptides
    Lyman, Edward
    Zuckerman, Daniel M.
    JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (06):
  • [7] Annealed Adaptive Importance Sampling
    Center, Julian L., Jr.
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2008, 1073 : 119 - 126
  • [8] Stochastic Gradient Annealed Importance Sampling for Efficient Online Marginal Likelihood Estimation
    Cameron, Scott A.
    Eggers, Hans C.
    Kroon, Steve
    ENTROPY, 2019, 21 (11)
  • [9] Free energy evaluation using marginalized annealed importance sampling
    Yasuda, Muneki
    Takahashi, Chako
    PHYSICAL REVIEW E, 2022, 106 (02)
  • [10] Optimization of Annealed Importance Sampling Hyperparameters
    Goshtasbpour, Shirin
    Perez-Cruz, Fernando
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT V, 2023, 13717 : 174 - 190