Stochastic seismic inversion using greedy annealed importance sampling

被引:13
|
作者
Xue, Yang [1 ]
Sen, Mrinal K. [1 ]
机构
[1] Univ Texas Austin, Inst Geophys, 8701 Mopac Blvd, Austin, TX 78712 USA
关键词
inverse theory; probability distribution; geophysical methods; WAVE-FORM INVERSION; GENETIC ALGORITHMS; MODEL;
D O I
10.1088/1742-2132/13/5/786
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A global optimization method called very fast simulated annealing (VFSA) inversion has been applied to seismic inversion. Here we address some of the limitations of VFSA by developing a new stochastic inference method, named greedy annealed importance sampling (GAIS). GAIS combines VFSA and greedy importance sampling (GIS), which uses a greedy search in the important regions located by VFSA, in order to attain fast convergence and provide unbiased estimation. We demonstrate the performance of GAIS with application to seismic inversion of field post- and pre-stack datasets. The results indicate that GAIS can improve lateral continuity of the inverted impedance profiles and provide better estimation of uncertainties than using VFSA alone. Thus this new hybrid method combining global and local optimization methods can be applied in seismic reservoir characterization and reservoir monitoring for accurate estimation of reservoir models and their uncertainties.
引用
收藏
页码:786 / 804
页数:19
相关论文
共 50 条
  • [41] Adaptive importance sampling for stochastic nonlinear systems
    Hoshiya, M
    Taniguchi, O
    Sutoh, A
    STOCHASTIC STRUCTURAL DYNAMICS, 1999, : 193 - 196
  • [42] OPTIMIZING ADAPTIVE IMPORTANCE SAMPLING BY STOCHASTIC APPROXIMATION
    Kawai, Reiichiro
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04): : A2774 - A2800
  • [43] Parallel Implementation of Stochastic Inversion of Seismic Tomography Data
    Dwornik, Maciej
    Pieta, Anna
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT II, 2012, 7204 : 353 - 360
  • [44] Key parameter optimization and analysis of stochastic seismic inversion
    Huang Zhe-Yuan
    Gan Li-Deng
    Dai Xiao-Feng
    Li Ling-Gao
    Wang Jun
    APPLIED GEOPHYSICS, 2012, 9 (01) : 49 - 56
  • [45] Deep physics-aware stochastic seismic inversion
    Burkle, Paula Yamada
    Azevedo, Leonardo
    Vellasco, Marley
    GEOPHYSICS, 2023, 88 (01) : R11 - R24
  • [46] Key parameter optimization and analysis of stochastic seismic inversion
    Zhe-Yuan Huang
    Li-Deng Gan
    Xiao-Feng Dai
    Ling-Gao Li
    Jun Wang
    Applied Geophysics, 2012, 9 : 49 - 56
  • [47] Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling
    Bardou, O.
    Frikha, N.
    Pages, G.
    MONTE CARLO METHODS AND APPLICATIONS, 2009, 15 (03): : 173 - 210
  • [48] STOCHASTIC INVERSION BY RAY CONTINUATION - APPLICATION TO SEISMIC TOMOGRAPHY
    HAAS, A
    VIALLIX, JR
    GEOPHYSICAL PROSPECTING, 1989, 37 (04) : 337 - 356
  • [49] Fast simulation of tandem networks using importance sampling and stochastic gradient techniques
    Freebersyser, JA
    Devetsikiotis, M
    AlQaq, WA
    Townsend, JK
    1996 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS - CONVERGING TECHNOLOGIES FOR TOMORROW'S APPLICATIONS, VOLS. 1-3, 1996, : 302 - 308
  • [50] Global stochastic seismic inversion using turning bands simulation and co-simulation
    Sadeghi, Mehdi
    Amini, Navid
    Falahat, Reza
    Sabeti, Hamid
    Madani, Nasser
    ACTA GEOPHYSICA, 2021, 69 (05) : 1717 - 1734