Fault Hamiltonicity and fault Hamiltonian connectivity of the (n, k)-star graphs

被引:53
|
作者
Hsu, HC [1 ]
Hsieh, YL [1 ]
Tan, JJM [1 ]
Hsu, LH [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Comp & Informat Sci, Hsinchu 300, Taiwan
关键词
Hamiltonian cycle; Hamiltonian connected; (n; k)-star graph;
D O I
10.1002/net.10096
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the fault Hamiltonicity, and the fault Hamiltonian connectivity of the (n, k)-star graph S-n,S-k. Assume that F subset of V(S-n,S-k) boolean OR E(S-n,S-k). For n - k greater than or equal to 2, we prove that S-n,S-k - F is Hamiltonian if \F\ less than or equal to n - 3 and S-n,S-k - F is Hamiltonian connected if \F\ less than or equal to n - 4. For n - k = 1, S-n,S-n-1 is isomorphic to the n-star graph S-n which is known to be Hamiltonian if and only if n > 2 and Hamiltonian connected if and only if n = 2. Moreover, all the bounds are tight. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:189 / 201
页数:13
相关论文
共 50 条
  • [41] Conditional fault hamiltonian connectivity of the complete graph
    Department of Information Management, Ta Hwa Institute of Technology, Hsinchu, 30740, Taiwan
    不详
    不详
    Inf. Process. Lett., 12 (585-588):
  • [42] Hamiltonian laceability on edge fault star graph
    Li, TK
    Tan, JJM
    Hsu, LH
    NINTH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, PROCEEDINGS, 2002, : 23 - 28
  • [43] Optimal Fault-Tolerant Hamiltonian and Hamiltonian Connected Graphs
    Chen, Y-Chuang
    Huang, Yong-Zen
    Hsu, Lih-Hsing
    Tan, Jimmy J. M.
    INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE, 2008, 1060 : 345 - +
  • [44] On the global strong resilience of fault Hamiltonian graphs
    Liu, Huiqing
    Zhang, Ruiting
    Zhang, Shunzhe
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 418
  • [45] On the 1-fault hamiltonicity for graphs satisfying Ore's theorem
    Su, Hsun
    Shih, Yuan-Kang
    Kao, Shin-Shin
    INFORMATION PROCESSING LETTERS, 2012, 112 (21) : 839 - 843
  • [46] First Zagreb Index, k-Connectivity, β-Deficiency and k-Hamiltonicity of Graphs
    An, Mingqiang
    Das, Kinkar Ch.
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2018, 80 (01) : 141 - 151
  • [47] Fault hamiltonicity of augmented cubes
    Hsu, HC
    Chiang, LC
    Tan, JJM
    Hsu, LH
    PARALLEL COMPUTING, 2005, 31 (01) : 131 - 145
  • [48] GENERALIZED FAULT TOLERANCE PROPERTIES OF STAR GRAPHS
    SRIMANI, PK
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 497 : 510 - 519
  • [49] Fault-tolerant maximal local-connectivity on Bubble-sort star graphs
    Cai, Hongyan
    Liu, Huiqing
    Lu, Mei
    DISCRETE APPLIED MATHEMATICS, 2015, 181 : 33 - 40
  • [50] Hyper hamiltonian laceability on edge fault star graph
    Li, TK
    Tar, JJM
    Hsu, LH
    INFORMATION SCIENCES, 2004, 165 (1-2) : 59 - 71