Fault Hamiltonicity and fault Hamiltonian connectivity of the (n, k)-star graphs

被引:53
|
作者
Hsu, HC [1 ]
Hsieh, YL [1 ]
Tan, JJM [1 ]
Hsu, LH [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Comp & Informat Sci, Hsinchu 300, Taiwan
关键词
Hamiltonian cycle; Hamiltonian connected; (n; k)-star graph;
D O I
10.1002/net.10096
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the fault Hamiltonicity, and the fault Hamiltonian connectivity of the (n, k)-star graph S-n,S-k. Assume that F subset of V(S-n,S-k) boolean OR E(S-n,S-k). For n - k greater than or equal to 2, we prove that S-n,S-k - F is Hamiltonian if \F\ less than or equal to n - 3 and S-n,S-k - F is Hamiltonian connected if \F\ less than or equal to n - 4. For n - k = 1, S-n,S-n-1 is isomorphic to the n-star graph S-n which is known to be Hamiltonian if and only if n > 2 and Hamiltonian connected if and only if n = 2. Moreover, all the bounds are tight. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:189 / 201
页数:13
相关论文
共 50 条
  • [31] A family of Hamiltonian and Hamiltonian connected graphs with fault tolerance
    Y-Chuang Chen
    Yong-Zen Huang
    Lih-Hsing Hsu
    Jimmy J. M. Tan
    The Journal of Supercomputing, 2010, 54 : 229 - 238
  • [32] A family of Hamiltonian and Hamiltonian connected graphs with fault tolerance
    Chen, Y-Chuang
    Huang, Yong-Zen
    Hsu, Lih-Hsing
    Tan, Jimmy J. M.
    JOURNAL OF SUPERCOMPUTING, 2010, 54 (02): : 229 - 238
  • [33] Conditional Edge-Fault Hamiltonicity of Cartesian Product Graphs
    Cheng, Chia-Wen
    Lee, Chia-Wei
    Hsieh, Sun-Yuan
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2013, 24 (10) : 1951 - 1960
  • [34] On Cyclic-Vertex Connectivity of (n, k)-Star Graphs
    Li, Yalan
    Zhang, Shemin
    Ye, Chengfu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [35] Generalized Edge-connectivity of (n, k)-star Graphs
    Wei, Yunchao
    Liu, Minghua
    2014 INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE, ELECTRONICS AND ELECTRICAL ENGINEERING (ISEEE), VOLS 1-3, 2014, : 277 - 281
  • [36] Fault-tolerance of (n, k)-star networks
    Li, Xiang-Jun
    Xu, Jun-Ming
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 248 : 525 - 530
  • [37] k-connectivity of Random Graphs and Random Geometric Graphs in Node Fault Model
    Takabe, Satoshi
    Wadayama, Tadashi
    PROCEEDINGS OF 2018 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2018), 2018, : 252 - 256
  • [38] Fault tolerant routing in star graphs using fault vector
    Das, RK
    DISTRIBUTED COMPUTING - IWDC 2005, PROCEEDINGS, 2005, 3741 : 475 - 486
  • [39] (n-3)-edge-fault-tolerant weak-pancyclicity of (n, k)-star graphs
    Duh, Dyi-Rong
    Chen, Tzu-Lung
    Wang, Yue-Li
    THEORETICAL COMPUTER SCIENCE, 2014, 516 : 28 - 39
  • [40] Conditional fault hamiltonian connectivity of the complete graph
    Ho, Tung-Yang
    Shih, Yuan-Kang
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    INFORMATION PROCESSING LETTERS, 2009, 109 (12) : 585 - 588