VARIATIONAL INFERENCE FOR NONPARAMETRIC SUBSPACE DICTIONARY LEARNING WITH HIERARCHICAL BETA PROCESS

被引:0
|
作者
Li, Shaoyang [1 ]
Tao, Xiaoming [1 ]
Lu, Jianhua [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, TNList, Beijing 100084, Peoples R China
来源
2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2017年
基金
中国国家自然科学基金;
关键词
Nonparametric Bayes; subspace dictionary learning; hierarchical Beta process; variational inference; image denoising;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Nonparametric Bayesian models have been implemented in dictionary learning. However, for signal samples from multiple subspaces, existing methods only learn one uniform dictionary and thus are not optimal for representing the subspace structures. To address this issue, we first utilize a combination of Dirichlet process and hierarchical Beta process as priors to infer the latent subspace number and dictionary dimension automatically; second, to derive tractable variational inference, we modify the priors with the Sethuraman's construction and further employ the multinomial approximation. Experimental results indicate that our approach can achieve a set of non-parametric subspace dictionaries, while showing performance enhancements in the tasks of image denoising.
引用
收藏
页码:2691 / 2695
页数:5
相关论文
共 50 条
  • [31] Wavelet Image Inpainting Based on Dictionary Learning with a Beta Process
    Zhou, Guanghua
    Zhu, Dazhou
    Wang, Kun
    Wu, Qiong
    Feng, Xiangchu
    Wang, Cheng
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [32] Bayesian hierarchical dictionary learning
    Waniorek, N.
    Calvetti, D.
    Somersalo, E.
    INVERSE PROBLEMS, 2023, 39 (02)
  • [33] Hierarchical Sparse Dictionary Learning
    Bian, Xiao
    Ning, Xia
    Jiang, Geoff
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2015, PT II, 2015, 9285 : 687 - 700
  • [34] Variational Bayesian Inference for CP Tensor Completion with Subspace Information
    Budzinskiy, S.
    Zamarashkin, N.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (08) : 3016 - 3027
  • [35] Variational Bayesian Inference for CP Tensor Completion with Subspace Information
    S. Budzinskiy
    N. Zamarashkin
    Lobachevskii Journal of Mathematics, 2023, 44 : 3016 - 3027
  • [36] Collapsed Variational Inference for Nonparametric Bayesian Group Factor Analysis
    Yang, Sikun
    Koeppl, Heinz
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 687 - 696
  • [37] Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
    Faes, C.
    Ormerod, J. T.
    Wand, M. P.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (495) : 959 - 971
  • [38] A NONPARAMETRIC-INFERENCE FOR A THINNED POINT PROCESS
    BENSAID, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (03): : 325 - 328
  • [39] Nonparametric inference on smoothed quantile regression process
    Hao, Meiling
    Lin, Yuanyuan
    Shen, Guohao
    Su, Wen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2023, 179
  • [40] Triply Stochastic Variational Inference for Non-linear Beta Process Factor Analysis
    Fan, Kai
    Zhang, Yizhe
    Henao, Ricardo
    Heller, Katherine
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 121 - 130