Hierarchical Sparse Dictionary Learning

被引:1
|
作者
Bian, Xiao [1 ]
Ning, Xia [2 ]
Jiang, Geoff [3 ]
机构
[1] N Carolina State Univ, Elect & Comp Engn Dept, Raleigh, NC 27695 USA
[2] Indiana Univ Purdue Univ, Dept Comp & Informat Sci, Indianapolis, IN 46202 USA
[3] NEC Labs Amer, Auton Management Dept, Princeton, NJ 45237 USA
关键词
K-SVD; REPRESENTATION; ALGORITHM;
D O I
10.1007/978-3-319-23525-7_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding plays a key role in high dimensional data analysis. One critical challenge of sparse coding is to design a dictionary that is both adaptive to the training data and generalizable to unseen data of same type. In this paper, we propose a novel dictionary learning method to build an adaptive dictionary regularized by an a-priori over-completed dictionary. This leads to a sparse structure of the learned dictionary over the a-priori dictionary, and a sparse structure of the data over the learned dictionary. We apply the hierarchical sparse dictionary learning approach on both synthetic data and real-world high-dimensional time series data. The experimental results demonstrate that the hierarchical sparse dictionary learning approach reduces overfitting and enhances the generalizability of the learned dictionary. Moreover, the learned dictionary is optimized to adapt to the given data and result in a more compact dictionary and a more robust sparse representation. The experimental results on real datasets demonstrate that the proposed approach can successfully characterize the heterogeneity of the given data, and leads to a better and more robust dictionary.
引用
收藏
页码:687 / 700
页数:14
相关论文
共 50 条
  • [1] MULTISCALE DICTIONARY LEARNING FOR HIERARCHICAL SPARSE REPRESENTATION
    Shen, Yangmei
    Xiong, Hongkai
    Dai, Wenrui
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2017, : 1332 - 1337
  • [2] Sparse Bayesian dictionary learning with a Gaussian hierarchical model
    Yang, Linxiao
    Fang, Jun
    Cheng, Hong
    Li, Hongbin
    SIGNAL PROCESSING, 2017, 130 : 93 - 104
  • [3] Sparse Bayesian Dictionary Learning with a Gaussian Hierarchical Model
    Yang, Linxiao
    Fang, Jun
    Li, Hongbin
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 2564 - 2568
  • [4] Unified Dictionary Learning and Region Tagging with Hierarchical Sparse Representation
    Cao, Xiaochun
    Wei, Xingxing
    Han, Yahong
    Yang, Yi
    Sebe, Nicu
    Hauptmann, Alexander
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (08) : 934 - 946
  • [5] Hierarchical Dictionary Learning and Sparse Coding for Static Signature Verification
    Zois, Elias N.
    Papagiannopoulou, Marianna
    Tsourounis, Dimitrios
    Economou, George
    PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, : 545 - 555
  • [6] Learning Hierarchical Sparse Representations using Iterative Dictionary Learning and Dimension Reduction
    Tarifi, Mohamad
    Sitharam, Meera
    Ho, Jeffery
    BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES 2011, 2011, 233 : 383 - 388
  • [7] Bayesian hierarchical dictionary learning
    Waniorek, N.
    Calvetti, D.
    Somersalo, E.
    INVERSE PROBLEMS, 2023, 39 (02)
  • [8] A Hierarchical Action Recognition System Applying Fisher Discrimination Dictionary Learning via Sparse Representation
    Bao, Ruihan
    Shibata, Tadashi
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2012, 7267 : 468 - 476
  • [9] Secure Dictionary Learning for Sparse Representation
    Nakachi, Takayuki
    Bandoh, Yukihiro
    Kiya, Hitoshi
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,
  • [10] ON THE SAMPLE COMPLEXITY OF SPARSE DICTIONARY LEARNING
    Seibert, M.
    Kleinsteuber, M.
    Gribonval, R.
    Jenatton, R.
    Bach, F.
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 244 - 247