Hierarchical Sparse Dictionary Learning

被引:1
|
作者
Bian, Xiao [1 ]
Ning, Xia [2 ]
Jiang, Geoff [3 ]
机构
[1] N Carolina State Univ, Elect & Comp Engn Dept, Raleigh, NC 27695 USA
[2] Indiana Univ Purdue Univ, Dept Comp & Informat Sci, Indianapolis, IN 46202 USA
[3] NEC Labs Amer, Auton Management Dept, Princeton, NJ 45237 USA
关键词
K-SVD; REPRESENTATION; ALGORITHM;
D O I
10.1007/978-3-319-23525-7_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sparse coding plays a key role in high dimensional data analysis. One critical challenge of sparse coding is to design a dictionary that is both adaptive to the training data and generalizable to unseen data of same type. In this paper, we propose a novel dictionary learning method to build an adaptive dictionary regularized by an a-priori over-completed dictionary. This leads to a sparse structure of the learned dictionary over the a-priori dictionary, and a sparse structure of the data over the learned dictionary. We apply the hierarchical sparse dictionary learning approach on both synthetic data and real-world high-dimensional time series data. The experimental results demonstrate that the hierarchical sparse dictionary learning approach reduces overfitting and enhances the generalizability of the learned dictionary. Moreover, the learned dictionary is optimized to adapt to the given data and result in a more compact dictionary and a more robust sparse representation. The experimental results on real datasets demonstrate that the proposed approach can successfully characterize the heterogeneity of the given data, and leads to a better and more robust dictionary.
引用
收藏
页码:687 / 700
页数:14
相关论文
共 50 条
  • [31] Secure Overcomplete Dictionary Learning for Sparse Representation
    Nakachi, Takayuki
    Bandoh, Yukihiro
    Kiya, Hitoshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (01) : 50 - 58
  • [32] An MDL Framework for Sparse Coding and Dictionary Learning
    Ramirez, Ignacio
    Sapiro, Guillermo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (06) : 2913 - 2927
  • [33] MULTILEVEL DICTIONARY LEARNING FOR SPARSE REPRESENTATION OF IMAGES
    Thiagarajan, Jayaraman J.
    Ramamurthy, Karthikeyan N.
    Spanias, Andreas
    2011 IEEE DIGITAL SIGNAL PROCESSING WORKSHOP AND IEEE SIGNAL PROCESSING EDUCATION WORKSHOP (DSP/SPE), 2011, : 271 - 276
  • [34] Sparse Dictionary Learning for Blind Hyperspectral Unmixing
    Liu, Yang
    Guo, Yi
    Li, Feng
    Xin, Lei
    Huang, Puming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (04) : 578 - 582
  • [35] Learning Discriminative Dictionary for Group Sparse Representation
    Sun, Yubao
    Liu, Qingshan
    Tang, Jinhui
    Tao, Dacheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2014, 23 (09) : 3816 - 3828
  • [36] COMPRESSIBLE DICTIONARY LEARNING FOR FAST SPARSE APPROXIMATIONS
    Yaghoobi, Mehrdad
    Davies, Mike E.
    2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 661 - 664
  • [37] Bayesian sparse reconstruction based on dictionary learning
    Wang, Yan
    Ke, Jun
    ADVANCED OPTICAL IMAGING TECHNOLOGIES III, 2020, 11549
  • [38] ADL: Active Dictionary Learning for Sparse Representation
    Tang, Bo
    Xu, Jin
    He, Haibo
    Man, Hong
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2723 - 2729
  • [39] Sparse ISAR Imaging Exploiting Dictionary Learning
    Hu Changyu
    Wang Ling
    Zhu Dongqiang
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (07) : 1735 - 1742
  • [40] Sparse ISAR Imaging Exploiting Dictionary Learning
    Hu C.
    Wang L.
    Zhu D.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2019, 41 (07): : 1735 - 1742