Hamiltonian cycles in Cayley graphs whose order has few prime factors

被引:0
|
作者
Kutnar, K. [1 ]
Marusic, D. [1 ,2 ]
Morris, D. W. [3 ]
Morris, J. [3 ]
Sparl, P. [2 ]
机构
[1] Univ Primorska, FAMNIT, Koper 6000, Slovenia
[2] Univ Ljubljana, PEF, Ljubljana 1000, Slovenia
[3] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cayley graphs; hamiltonian cycles; DIGRAPHS; PATHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if C a y (G; S) is a connected Cayley graph with n vertices, and the prime factorization of n is very small, then C a y (G; S) has a hamiltonian cycle. More precisely, if p, q, and r are distinct primes, then n can be of the form kp with 2 4 6 not equal k < 3 2, or of the form k p q with k <= 5, or of the form p q r, or of the form k p 2 with k <= 4, or of the form kp(3) with k <= 2.
引用
收藏
页码:27 / 71
页数:45
相关论文
共 50 条
  • [31] NORMAL EDGE-TRANSITIVE CAYLEY GRAPHS WHOSE ORDER ARE A PRODUCT OF THREE PRIMES
    Ghorbani, Modjtaba
    Songhori, Mahin
    Parsa, Mina Rajabi
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 628 - 635
  • [32] Normality of Tetravalent Cayley Graphs of Odd Prime-cube Order and Its Application
    Yan Quan FENG Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2005, 21 (04) : 903 - 912
  • [33] Ordinary Pairing Friendly Curve of Embedding Degree 1 Whose Order Has Two Large Prime Factors
    Izuta, Tetsuya
    Nogami, Yasuyuki
    Morikawa, Yoshitaka
    TENCON 2010: 2010 IEEE REGION 10 CONFERENCE, 2010, : 769 - 772
  • [34] 6-regular Cayley graphs on abelian groups of odd order are hamiltonian decomposable
    Westlund, Erik E.
    Liu, Jiuqiang
    Kreher, Donald L.
    DISCRETE MATHEMATICS, 2009, 309 (16) : 5106 - 5110
  • [35] A classification of tetravalent non-normal Cayley graphs of order twice a prime square
    Cui, Li
    Zhou, Jin-Xin
    Ghasemi, Mohsen
    Talebi, Ali Asghar
    Varmazyar, Rezvan
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (03) : 663 - 676
  • [36] A classification of tetravalent non-normal Cayley graphs of order twice a prime square
    Li Cui
    Jin-Xin Zhou
    Mohsen Ghasemi
    Ali Asghar Talebi
    Rezvan Varmazyar
    Journal of Algebraic Combinatorics, 2021, 53 : 663 - 676
  • [37] Normality of tetravalent Cayley graphs of odd prime-cube order and its application
    Feng, YQ
    Xu, MY
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (04) : 903 - 912
  • [38] Bottleneck matchings and Hamiltonian cycles in higher-order Gabriel graphs
    Biniaz, Ahmad
    Maheshwari, Anil
    Smid, Michiel
    INFORMATION PROCESSING LETTERS, 2020, 153
  • [39] Finite groups with an automorphism of prime order whose centralizer has small rank
    Khukhro, EI
    Mazurov, VD
    JOURNAL OF ALGEBRA, 2006, 301 (02) : 474 - 492
  • [40] Asymptotic automorphism groups of Cayley digraphs and graphs of abelian groups of prime-power order
    Dobson, Edward
    ARS MATHEMATICA CONTEMPORANEA, 2010, 3 (02) : 201 - 214