Hamiltonian cycles in Cayley graphs whose order has few prime factors

被引:0
|
作者
Kutnar, K. [1 ]
Marusic, D. [1 ,2 ]
Morris, D. W. [3 ]
Morris, J. [3 ]
Sparl, P. [2 ]
机构
[1] Univ Primorska, FAMNIT, Koper 6000, Slovenia
[2] Univ Ljubljana, PEF, Ljubljana 1000, Slovenia
[3] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Cayley graphs; hamiltonian cycles; DIGRAPHS; PATHS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that if C a y (G; S) is a connected Cayley graph with n vertices, and the prime factorization of n is very small, then C a y (G; S) has a hamiltonian cycle. More precisely, if p, q, and r are distinct primes, then n can be of the form kp with 2 4 6 not equal k < 3 2, or of the form k p q with k <= 5, or of the form p q r, or of the form k p 2 with k <= 4, or of the form kp(3) with k <= 2.
引用
收藏
页码:27 / 71
页数:45
相关论文
共 50 条