A Stochastic Collocation Method Combined With a Reduced Basis Method to Compute Uncertainties in Numerical Dosimetry

被引:15
|
作者
Drissaoui, Mohammed Amine [1 ,2 ]
Lanteri, Stephane [3 ]
Leveque, Philippe [4 ]
Musy, Francois [2 ]
Nicolas, Laurent [1 ]
Perrussel, Ronan [5 ]
Voyer, Damien [1 ]
机构
[1] Univ Lyon, CNRS, Lab Ampere, Ecole Cent Lyon, F-69134 Ecully, France
[2] Univ Lyon, CNRS, Inst Camille Jordan, Ecole Cent Lyon, F-69134 Ecully, France
[3] INRIA, Team NACHOS, F-06902 Sophia Antipolis, France
[4] Univ Limoges, CNRS, XLIM, F-87060 Limoges, France
[5] Univ Toulouse, CNRS, LAPLACE, F-31071 Toulouse, France
关键词
Dosimetry; finite-element methods; numerical analysis; MODELS; HEAD; SAR;
D O I
10.1109/TMAG.2011.2174347
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A reduced basis method is introduced to deal with a stochastic problem in a numerical dosimetry application in which the field solutions are computed using an iterative solver. More precisely, the computations already performed are used to build an initial guess for the iterative solver. It is shown that this approach significantly reduces the computational cost.
引用
收藏
页码:563 / 566
页数:4
相关论文
共 50 条
  • [41] Numerical Simulation of Physical Fields by the Collocation Method
    E. E. Shcherbakova
    S. Yu. Knyazev
    Russian Physics Journal, 2022, 64 : 2283 - 2291
  • [42] Numerical solution of the EFIE by the meshfree collocation method
    Honarbakhsh, B.
    Tavakoli, A.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2013, 37 (01) : 153 - 161
  • [43] Numerical Simulation of Physical Fields by the Collocation Method
    Shcherbakova, E. E.
    Knyazev, S. Yu
    RUSSIAN PHYSICS JOURNAL, 2022, 64 (12) : 2283 - 2291
  • [44] Numerical solution of semidifferential equations by collocation method
    Rawashdeh, EA
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 174 (02) : 869 - 876
  • [45] Emission in Reverberation Chamber:: Numerical Evaluation of the total power radiated by a wire with a stochastic collocation method
    Diouf, F.
    Paladian, F.
    Fogli, M.
    Chauviere, C.
    Bonnet, P.
    EMC ZURICH-MUNICH 2007, SYMPOSIUM DIGEST, 2007, : 99 - +
  • [46] A collocation method for the numerical solution of a class of linear stochastic integral equations based on Legendre polynomials
    Yaghoobnia, Alireza
    Kazemi, Manochehr
    2022 SECOND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND HIGH PERFORMANCE COMPUTING (DCHPC), 2022, : 26 - 30
  • [47] Stability of radial basis collocation method for transient dynamics
    Luo H.-Z.
    Chen J.-S.
    Hu H.-Y.
    Huang X.-C.
    Journal of Shanghai Jiaotong University (Science), 2010, 15 (5) : 615 - 621
  • [48] The Hermite collocation method using radial basis functions
    Jumarhon, B
    Amini, S
    Chen, K
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2000, 24 (7-8) : 607 - 611
  • [49] Stability of Radial Basis Collocation Method for Transient Dynamics
    罗汉中
    陈俊贤
    胡馨云
    黄醒春
    JournalofShanghaiJiaotongUniversity(Science), 2010, 15 (05) : 615 - 621
  • [50] Subdomain radial basis collocation method for fracture mechanics
    Wang, Lihua
    Chen, Jiun-Shyan
    Hu, Hsin-Yun
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (07) : 851 - 876