A Stochastic Collocation Method Combined With a Reduced Basis Method to Compute Uncertainties in Numerical Dosimetry

被引:15
|
作者
Drissaoui, Mohammed Amine [1 ,2 ]
Lanteri, Stephane [3 ]
Leveque, Philippe [4 ]
Musy, Francois [2 ]
Nicolas, Laurent [1 ]
Perrussel, Ronan [5 ]
Voyer, Damien [1 ]
机构
[1] Univ Lyon, CNRS, Lab Ampere, Ecole Cent Lyon, F-69134 Ecully, France
[2] Univ Lyon, CNRS, Inst Camille Jordan, Ecole Cent Lyon, F-69134 Ecully, France
[3] INRIA, Team NACHOS, F-06902 Sophia Antipolis, France
[4] Univ Limoges, CNRS, XLIM, F-87060 Limoges, France
[5] Univ Toulouse, CNRS, LAPLACE, F-31071 Toulouse, France
关键词
Dosimetry; finite-element methods; numerical analysis; MODELS; HEAD; SAR;
D O I
10.1109/TMAG.2011.2174347
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A reduced basis method is introduced to deal with a stochastic problem in a numerical dosimetry application in which the field solutions are computed using an iterative solver. More precisely, the computations already performed are used to build an initial guess for the iterative solver. It is shown that this approach significantly reduces the computational cost.
引用
收藏
页码:563 / 566
页数:4
相关论文
共 50 条
  • [21] Numerical Solution of Nonlinear Schrodinger Equations by Collocation Method Using Radial Basis Functions
    Haq, Sirajul
    Siraj-Ul-Islam
    Uddin, Marjan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2009, 44 (02): : 115 - 135
  • [22] Finite subdomain radial basis collocation method
    Fuyun Chu
    Lihua Wang
    Zheng Zhong
    Computational Mechanics, 2014, 54 : 235 - 254
  • [23] Numerical solutions of quantum mechanical problems using the basis-spline collocation method
    Odero, DO
    Peacher, JL
    Madison, DH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2001, 12 (07): : 1093 - 1108
  • [24] Finite subdomain radial basis collocation method
    Chu, Fuyun
    Wang, Lihua
    Zhong, Zheng
    COMPUTATIONAL MECHANICS, 2014, 54 (02) : 235 - 254
  • [25] Numerical solution of stochastic fractional integro-differential equation by the spectral collocation method
    Taheri, Z.
    Javadi, S.
    Babolian, E.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 321 : 336 - 347
  • [26] A Stochastic Collocation Method for Simulating Groundwater Recharge
    Tang, Yunqing
    Shi, Liangsheng
    Yang, Jinzhong
    ADVANCED CONSTRUCTION TECHNOLOGIES, 2014, 919-921 : 1201 - 1205
  • [27] Numerical solution of stochastic ordinary differential equations using HAAR wavelet collocation method
    Shiralashetti, S. C.
    Lamani, Lata
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2022, 25 (02) : 195 - 211
  • [28] Numerical solution of stochastic ordinary differential equations using HAAR wavelet collocation method
    Shiralashetti, S. C.
    Lamani, Lata
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021,
  • [29] Collocation method for stochastic delay differential equations
    Fodor, Gergo
    Sykora, Henrik T.
    Bachrathy, Daniel
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 74
  • [30] THE SPECTRAL COLLOCATION METHOD FOR STOCHASTIC DIFFERENTIAL EQUATIONS
    Huang, Can
    Zhang, Zhimin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2013, 18 (03): : 667 - 679