Seasonal and regional changes in temperature projections over the Arabian Peninsula based on the CMIP5 multi-model ensemble dataset

被引:13
|
作者
Almazroui, Mansour [1 ]
Khalid, M. Salman [1 ]
Islam, M. Nazrul [1 ]
Saeed, Sajjad [1 ,2 ]
机构
[1] King Abdulaziz Univ, Ctr Excellence Climate Change Res, Dept Meteorol, Jeddah 21589, Saudi Arabia
[2] Katholieke Univ Leuven, Dept Earth & Environm Sci, Leuven, Belgium
关键词
Temperature projection; Seasons; Regions; CMIP5; multi-models; Arabian Peninsula; CLIMATE-CHANGE; SAUDI-ARABIA; PRECIPITATION; UNCERTAINTIES; VARIABILITY; TRENDS; MODEL;
D O I
10.1016/j.atmosres.2020.104913
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study explores the seasonal to inter-seasonal and regional changes in temperature (and related uncertainties) over the Arabian Peninsula, by using the multi-model ensemble from the Couple Models Intercomparison Project Phase 5 (CMIP5), under two Representative Concentration Pathway (RCP) scenarios: RCP4.5 and RCP8.5. The seasonal temperature changes are examined for three future periods (2030-2039; 2060-2069 and 2090-2099) with reference to the present climate (1971-2000). The 22-member CMIP5 mean multi-model ensemble (MME) shows a significant increase in temperature (at the 95% confidence level) over the Arabian Peninsula during all three future periods, under both RCPs. The results indicate that the southern and central regions of the Arabian Peninsula are likely to experience larger future temperature changes during the winter and spring seasons. On the other hand, amplification in future temperature changes over the northern and central regions of the Peninsula will more likely occur during the summer and autumn seasons. The interseasonal analysis of the MME shows large temperature biases during the winter (Dec-Feb) and summer (Jun Aug) months, while the simulated results closely resemble the observations during both transition periods i.e. spring (Mar-May) and autumn (Sep-Nov). The inter-seasonal results also reveal larger (smaller) temperature increases during September, October and November (March, April) for all future periods under both RCP4.5 and RCP8.5. Results further indicate that the central region of the Arabian Peninsula will experience higher temperatures during all seasons in the 21st century. This information on changes in projected temperature is valuable for the long-term planning of the region.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [41] Comparison of regional characteristics of land precipitation climatology projected by an MRI-AGCM multi-cumulus scheme and multi-SST ensemble with CMIP5 multi-model ensemble projections
    Rui Ito
    Tosiyuki Nakaegawa
    Izuru Takayabu
    Progress in Earth and Planetary Science, 7
  • [42] Comparison of regional characteristics of land precipitation climatology projected by an MRI-AGCM multi-cumulus scheme and multi-SST ensemble with CMIP5 multi-model ensemble projections
    Ito, Rui
    Nakaegawa, Tosiyuki
    Takayabu, Izuru
    PROGRESS IN EARTH AND PLANETARY SCIENCE, 2020, 7 (01)
  • [43] Evaluation and projection of extreme precipitation indices in the Eastern Mediterranean based on CMIP5 multi-model ensemble
    Samuels, Rana
    Hochman, Assaf
    Baharad, Anat
    Givati, Amir
    Levi, Yoav
    Yosef, Yizhak
    Saaroni, Hadas
    Ziv, Baruch
    Harpaz, Tzvika
    Alpert, Pinhas
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 (05) : 2280 - 2297
  • [44] Changes in temperature and precipitation extremes in the CMIP5 ensemble
    Kharin, V. V.
    Zwiers, F. W.
    Zhang, X.
    Wehner, M.
    CLIMATIC CHANGE, 2013, 119 (02) : 345 - 357
  • [45] Changes in temperature and precipitation extremes in the CMIP5 ensemble
    V. V. Kharin
    F. W. Zwiers
    X. Zhang
    M. Wehner
    Climatic Change, 2013, 119 : 345 - 357
  • [46] Probabilistic multi-model ensemble prediction of interdecadal variability of East Asian surface air temperature based on CMIP5 data
    Zhou, Hongmei
    Wang, Shusu
    Wang, Shuqin
    Mao, Yue
    FOURTH INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND ENVIRONMENTAL PROTECTION, 2020, 467
  • [47] Differences in multi-model ensembles of CMIP5 and CMIP6 projections for future droughts in South Korea
    Song, Young Hoon
    Shahi, Amsuddin
    Chung, Eun-Sung
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2022, 42 (05) : 2688 - 2716
  • [48] Copula-based risk evaluation of global meteorological drought in the 21st century based on CMIP5 multi-model ensemble projections
    Wu, Chuanhao
    Yeh, Pat J-F
    Chen, Yi-Ying
    Lv, Wenhan
    Hu, Bill X.
    Huang, Guoru
    JOURNAL OF HYDROLOGY, 2021, 598
  • [49] Suitability Regionalization of Chinese Medicinal Yam under the impact of Climate Change Simulated by CMIP5 Multi-Model Ensemble Projections
    Hu, Biao
    Tian, Zhan
    Fan, Dongli
    Xu, Hanqing
    Ji, Yinghao
    Wang, Xiangyi
    Shi, Runhe
    Chen, Maosi
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY XV, 2018, 10767
  • [50] Recent changes of Northern Indian Ocean summer rainfall based on CMIP5 multi-model
    Yali Yang
    Yan Du
    Yuhong Zhang
    Xuhua Cheng
    Journal of Ocean University of China, 2013, 12 : 201 - 208