Seasonal and regional changes in temperature projections over the Arabian Peninsula based on the CMIP5 multi-model ensemble dataset

被引:13
|
作者
Almazroui, Mansour [1 ]
Khalid, M. Salman [1 ]
Islam, M. Nazrul [1 ]
Saeed, Sajjad [1 ,2 ]
机构
[1] King Abdulaziz Univ, Ctr Excellence Climate Change Res, Dept Meteorol, Jeddah 21589, Saudi Arabia
[2] Katholieke Univ Leuven, Dept Earth & Environm Sci, Leuven, Belgium
关键词
Temperature projection; Seasons; Regions; CMIP5; multi-models; Arabian Peninsula; CLIMATE-CHANGE; SAUDI-ARABIA; PRECIPITATION; UNCERTAINTIES; VARIABILITY; TRENDS; MODEL;
D O I
10.1016/j.atmosres.2020.104913
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This study explores the seasonal to inter-seasonal and regional changes in temperature (and related uncertainties) over the Arabian Peninsula, by using the multi-model ensemble from the Couple Models Intercomparison Project Phase 5 (CMIP5), under two Representative Concentration Pathway (RCP) scenarios: RCP4.5 and RCP8.5. The seasonal temperature changes are examined for three future periods (2030-2039; 2060-2069 and 2090-2099) with reference to the present climate (1971-2000). The 22-member CMIP5 mean multi-model ensemble (MME) shows a significant increase in temperature (at the 95% confidence level) over the Arabian Peninsula during all three future periods, under both RCPs. The results indicate that the southern and central regions of the Arabian Peninsula are likely to experience larger future temperature changes during the winter and spring seasons. On the other hand, amplification in future temperature changes over the northern and central regions of the Peninsula will more likely occur during the summer and autumn seasons. The interseasonal analysis of the MME shows large temperature biases during the winter (Dec-Feb) and summer (Jun Aug) months, while the simulated results closely resemble the observations during both transition periods i.e. spring (Mar-May) and autumn (Sep-Nov). The inter-seasonal results also reveal larger (smaller) temperature increases during September, October and November (March, April) for all future periods under both RCP4.5 and RCP8.5. Results further indicate that the central region of the Arabian Peninsula will experience higher temperatures during all seasons in the 21st century. This information on changes in projected temperature is valuable for the long-term planning of the region.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [21] Temperature extremes Projections over Bangladesh from CMIP6 Multi-model Ensemble
    Akter, Mst Yeasmin
    Islam, Abu Reza Md Towfiqul
    Mallick, Javed
    Alam, Md Mahfuz
    Alam, Edris
    Shahid, Shamsuddin
    Biswas, Jatish Chandra
    Alam, G. M. Manirul
    Pal, Subodh Chandra
    Oliver, Md Moinul Hosain
    THEORETICAL AND APPLIED CLIMATOLOGY, 2024, 155 (09) : 8843 - 8869
  • [22] Projection of future changes in climate in Northeast China using a CMIP5 multi-model ensemble
    Tao Chun-Wei
    Jiang Chao
    Sun Jian-Xin
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2016, 59 (10): : 3580 - 3591
  • [23] Projected changes in modified Thornthwaite climate zones over Southwest Asia using a CMIP5 multi-model ensemble
    Rahimi, Jaber
    Khalili, Ali
    Butterbach-Bahl, Klaus
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019, 39 (12) : 4575 - 4594
  • [24] Evaluation and projected changes in daily rainfall characteristics over Central Africa based on a multi-model ensemble mean of CMIP5 simulations
    Denis Sonkoué
    David Monkam
    Thierry C. Fotso-Nguemo
    Zéphirin D. Yepdo
    Derbetini A. Vondou
    Theoretical and Applied Climatology, 2019, 137 : 2167 - 2186
  • [25] Constraint on regional land surface air temperature projections in CMIP6 multi-model ensemble
    Jie Zhang
    Tongwen Wu
    Laurent Li
    Kalli Furtado
    Xiaoge Xin
    Chengjun Xie
    Mengzhe Zheng
    He Zhao
    Yumeng Zhou
    npj Climate and Atmospheric Science, 6
  • [26] Evaluation and projected changes in daily rainfall characteristics over Central Africa based on a multi-model ensemble mean of CMIP5 simulations
    Sonkoue, Denis
    Monkam, David
    Fotso-Nguemo, Thierry C.
    Yepdo, Zephirin D.
    Vondou, Derbetini A.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 137 (3-4) : 2167 - 2186
  • [27] Constraint on regional land surface air temperature projections in CMIP6 multi-model ensemble
    Zhang, Jie
    Wu, Tongwen
    Li, Laurent
    Furtado, Kalli
    Xin, Xiaoge
    Xie, Chengjun
    Zheng, Mengzhe
    Zhao, He
    Zhou, Yumeng
    NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2023, 6 (01)
  • [28] CMIP5 Climate Multi-model Ensemble Optimization Based on Spatial-Temporal Distribution
    Zuo Z.
    Zhang F.
    Zhang L.
    Sun Y.
    Zhang R.
    Yu T.
    Lu J.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56 (05): : 805 - 814
  • [29] Correction: Corrigendum: Predictability of Precipitation Over the Conterminous U.S. Based on the CMIP5 Multi-Model Ensemble
    Mingkai Jiang
    Benjamin S. Felzer
    Dork Sahagian
    Scientific Reports, 6
  • [30] Assessment of CMIP5 Multi-Model Dataset to Evaluate Impacts on the Future Regional Water Resources of South Florida
    Dessalegne, Tibebe
    Obeysekera, Jayantha
    Nair, Sashi
    Barnes, Jenifer
    WORLD ENVIRONMENTAL AND WATER RESOURCES CONGRESS 2016: HYDRAULICS AND WATERWAYS AND HYDRO-CLIMATE/CLIMATE CHANGE, 2016, : 586 - 596