Ultra-high-resolution Mapping of Cortical Layers 3T-Guided 7T MRI

被引:2
|
作者
Ramadass, Karthik [1 ]
Rheault, Francois [3 ]
Cai, Leon Y. [2 ]
Remedios, Lucas W. [1 ]
DArchangel, Micah [5 ]
Lyu, Ilwoo [3 ,4 ]
Barquero, Laura A. [5 ]
Newton, Allen T. [2 ,6 ]
Cutting, Laurie E. [5 ]
Huo, Yuankai [1 ,3 ]
Landman, Bennett A. [1 ,2 ,3 ,5 ,6 ]
机构
[1] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Biomed Engn, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Dept Elect & Comp Engn, 221 Kirkland Hall, Nashville, TN 37235 USA
[4] Ulsan Natl Inst Sci & Technol, Dept Comp Sci & Engn, Ulsan, South Korea
[5] Vanderbilt Univ, Vanderbilt Brain Inst, 221 Kirkland Hall, Nashville, TN 37235 USA
[6] Vanderbilt Univ, Inst Imaging Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
来源
基金
美国国家卫生研究院;
关键词
MRI; cortical surface mapping; T1-weighted; SWI;
D O I
10.1117/12.2611857
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
7T MRI provides unprecedented resolution for examining human brain anatomy in vivo. For example, 7T MRI enables deep thickness measurement of laminar subdivisions in the right fusiform area. Existing laminar thickness measurement on 7T is labor intensive, and error prone since the visual inspection of the image is typically along one of the three orthogonal planes (axial, coronal, or sagittal view). To overcome this, we propose a new analytics tool that allows flexible quantification of cortical thickness on a 2D plane that is orthogonal to the cortical surface (beyond axial, coronal, and sagittal views) based on the 3D computational surface reconstruction. The proposed method further distinguishes high quality 2D planes and the low-quality ones by automatically inspecting the angles between the surface normals and slice direction. In our approach, we acquired a pair of 3T and 7T scans (same subject). We extracted the brain surfaces from the 3T scan using MaCRUISE and projected the surface to the 7T scan's space. After computing the angles between the surface normals and axial direction vector, we found that 18.58% of surface points were angled at more than 80 degrees with the axial direction vector and had 2D axial planes with visually distinguishable cortical layers. 15.12% of the surface points with normal vectors angled at 30 degrees or lesser with the axial direction, had poor 2D axial slices for visual inspection of the cortical layers. This effort promises to dramatically extend the area of cortex that can be quantified with ultra-high resolution in-plane imaging methods.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7T
    Anita A. Harteveld
    Anja G. van der Kolk
    H. Bart van der Worp
    Nikki Dieleman
    Jeroen C. W. Siero
    Hugo J. Kuijf
    Catharina J. M. Frijns
    Peter R. Luijten
    Jaco J. M. Zwanenburg
    Jeroen Hendrikse
    European Radiology, 2017, 27 : 1585 - 1595
  • [22] High-resolution intracranial vessel wall MRI in an elderly asymptomatic population: comparison of 3T and 7T
    Harteveld, Anita A.
    van der Kolk, Anja G.
    van der Worp, H. Bart
    Dieleman, Nikki
    Siero, Jeroen C. W.
    Kuijf, Hugo J.
    Frijns, Catharina J. M.
    Luijten, Peter R.
    Zwanenburg, Jaco J. M.
    Hendrikse, Jeroen
    EUROPEAN RADIOLOGY, 2017, 27 (04) : 1585 - 1595
  • [23] High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T
    Priovoulos, Nikos
    Jacobs, Heidi I. L.
    Ivanov, Dimo
    Uludag, Kamil
    Verhey, Frans R. J.
    Poser, Benedikt A.
    NEUROIMAGE, 2018, 168 : 427 - 436
  • [24] Comparison of Multiple Sclerosis Cortical Lesion Types Detected by Multicontrast 3T and 7T MRI
    Maranzano, J.
    Dadar, M.
    Rudko, D. A.
    De Nigris, D.
    Elliott, C.
    Gati, J. S.
    Morrow, S. A.
    Menon, R. S.
    Collins, D. L.
    Arnold, D. L.
    Narayanan, S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (07) : 1162 - 1169
  • [25] 7T MRI Synthesization from 3T Acquisitions
    Cui, Qiming
    Tosun, Duygu
    Mukherjee, Pratik
    Abbasi-Asl, Reza
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2024, PT VII, 2024, 15007 : 35 - 44
  • [26] Individualized cognitive neuroscience needs 7T: Comparing numerosity maps at 3T and 7T MRI
    Cai, Yuxuan
    Hofstetter, Shir
    Zwaag, Wietske van der
    Zuiderbaan, Wietske
    Dumoulin, Serge O.
    NEUROIMAGE, 2021, 237
  • [27] A 7T MRI-Guided Learning Method for Automatic Hippocampal Subfield Segmentation on Routine 3T MRI
    Wang, Linjin
    He, Jiangtao
    Geng, Guohong
    Zhong, Lisha
    Li, Xinwei
    IEEE ACCESS, 2025, 13 : 42428 - 42440
  • [28] TRABECULAR SUBCHONDRAL BONE ANALYSIS OF THE DISTAL RADIUS AT ULTRA-HIGH FIELD (7T) MRI: COMPARISON WITH 3T MRI AND RADIOGRAPHY
    Jarraya, M.
    Heiss, R.
    Duryea, J.
    Nagel, A. N.
    Lynch, J. A.
    Guermazi, A.
    Weber, M. -A.
    Arkudas, A.
    Horch, R. E.
    Uder, M.
    Roemer, F. W.
    OSTEOARTHRITIS AND CARTILAGE, 2021, 29 : S156 - S157
  • [29] Cortical microinfarcts on 7T MRI in patients with spontaneous intracerebral hemorrhage
    van Veluw, Susanne J.
    Jolink, Wilmar M. T.
    Hendrikse, Jeroen
    Geerlings, Mirjann I.
    Luijten, Peter R.
    Biessels, Geert Jan
    Klijn, Catharina J. M.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2014, 34 (07): : 1104 - 1106
  • [30] 7T MRI subthalamic nucleus atlas for use with 3T MRI
    Milchenko, Mikhail
    Norris, Scott A.
    Poston, Kathleen
    Campbell, Meghan C.
    Ushe, Mwiza
    Perlmutter, Joel S.
    Snyder, Abraham Z.
    JOURNAL OF MEDICAL IMAGING, 2018, 5 (01)