Very weak solutions for Poisson-Nernst-Planck system

被引:4
|
作者
Hineman, Jay L. [1 ]
Ryham, Rolf J. [1 ]
机构
[1] Fordham Univ, Dept Math, Bronx, NY 10458 USA
关键词
Poisson-Nernst-Planck; Drift-diffusion-Poisson; Stationary diffuse charge; ELLIPTIC-EQUATIONS; TIME BEHAVIOR; EXISTENCE; DISTANCE; RESPECT; FLUIDS;
D O I
10.1016/j.na.2014.11.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate a notion of very weak solution for the Poisson-Nernst-Planck system. The stationary system possesses a local monotonicity formula. Iterative application of the formula reveals improvement in estimates for ion density and potential, and leads to a local boundedness result. Local boundedness extends to steady-state systems for multiple ions and variable coefficients. The formulation applies to the related Keller-Segel system where stationary very weak solutions in two dimensions are regular. Examples illustrate how structure influences this regularity in higher dimensions. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:12 / 24
页数:13
相关论文
共 50 条
  • [21] Test of Poisson-Nernst-Planck theory in ion channels
    Corry, B
    Kuyucak, S
    Chung, SH
    [J]. JOURNAL OF GENERAL PHYSIOLOGY, 1999, 114 (04): : 597 - 599
  • [22] Error Analysis of Mixed Finite Element Method for Poisson-Nernst-Planck System
    He, Mingyan
    Sun, Pengtao
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (06) : 1924 - 1948
  • [23] A weak Galerkin finite element method for time-dependent Poisson-Nernst-Planck equations
    Ji, Guanghua
    Zhu, Wanwan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 416
  • [24] Multiple solutions of steady-state Poisson-Nernst-Planck equations with steric effects
    Lin, Tai-Chia
    Eisenberg, Bob
    [J]. NONLINEARITY, 2015, 28 (07) : 2053 - 2080
  • [25] Analytical solution of the Poisson-Nernst-Planck equations for an electrochemical system close to electroneutrality
    Pabst, M.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (22):
  • [26] Introduction of effective dielectric constant to the Poisson-Nernst-Planck model
    Sawada, Atsushi
    [J]. PHYSICAL REVIEW E, 2016, 93 (05)
  • [27] A conservative finite difference scheme for Poisson-Nernst-Planck equations
    Flavell, Allen
    Machen, Michael
    Eisenberg, Bob
    Kabre, Julienne
    Liu, Chun
    Li, Xiaofan
    [J]. JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (01) : 235 - 249
  • [28] Poisson-Nernst-Planck systems for ion channels with permanent charges
    Eisenberg, Bob
    Liu, Weishi
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 38 (06) : 1932 - 1966
  • [29] Exact solution of the Poisson-Nernst-Planck equations in the linear regime
    Golovnev, A.
    Trimper, S.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (11):
  • [30] POISSON-NERNST-PLANCK (PNP) THEORY OF AN OPEN IONIC CHANNEL
    EISENBERG, R
    CHEN, DP
    [J]. BIOPHYSICAL JOURNAL, 1993, 64 (02) : A22 - A22