Uncertainty principles of Heisenberg type for the Bargmann transform

被引:3
|
作者
Soltani, Fethi [1 ,2 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Lab Anal Math & Applicat LR11ES11, Tunis 2092, Tunisia
[2] Univ Carthage, Ecole Natl Ingenieurs Carthage, Tunis 2035, Tunisia
关键词
Weighted Bergman space; Bargmann transform; Uncertainty inequalities; BERGMAN; OPERATORS; SPACES;
D O I
10.1007/s13370-021-00924-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we introduce a family of weighted Bergman spaces {A(alpha,n)}(n is an element of N). This family satisfies the continuous inclusions A(alpha,n) subset of ... subset of A(alpha,2) subset of A(alpha,1) subset of A(alpha,0) = A(alpha), where A(alpha) is the classical weighted Bergman space. Next, we define and study the derivative operator del = d/dz and its adjoint operator L-alpha = z(2) d/dz + (alpha + 2)z on the weighted Bergman space A(alpha), and we establish an uncertainty inequality of Heisenberg-type for this space. A more general uncertainty inequality for the space A(alpha,n) is also given when we considered the operators del(n) = del(n) and L-alpha,L-n := (L-alpha)(n). Afterward, we give Heisenberg-type and Laeng-Morpurgo-type uncertainty inequalities for the Bargmann transform B-alpha, which is an isometric isomorphism between the space A(alpha) and the Lebesgue space L-2(R+,d mu(alpha)), where d mu(alpha) is an appropriate measure.
引用
收藏
页码:1629 / 1643
页数:15
相关论文
共 50 条
  • [41] Segal-Bargmann transform and Paley-Wiener theorems on Heisenberg motion groups
    Sen, Suparna
    ADVANCES IN PURE AND APPLIED MATHEMATICS, 2016, 7 (01) : 13 - 28
  • [42] Some uncertainty principles for the quaternion Heisenberg group
    Bouhrara, Adil
    Kabbaj, Samir
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (03)
  • [43] Tighter Heisenberg-Weyl type uncertainty principle associated with quaternion wavelet transform
    Wang, Xinyu
    Zheng, Shenzhou
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2023, 14 (01)
  • [44] Heisenberg Uncertainty Principles for an Oscillatory Integral Operator
    Castro, L. P.
    Guerra, R. C.
    Tuan, N. M.
    ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2017, 1798
  • [45] THE RELATIVISTIC BARGMANN TRANSFORM
    ALDAYA, V
    GUERRERO, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (22): : L1175 - L1181
  • [46] Discrete Bargmann transform
    Uriostegui, Kenan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2019, 36 (08) : 1367 - 1373
  • [47] Uncertainty Principle for Gabor Transform on the Quaternionic Heisenberg Group
    Faress, Moussa
    Fahlaoui, Said
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2021, 42 (10) : 1222 - 1237
  • [48] Quantitative uncertainty principles for the Weinstein transform
    A. Abouelaz
    A. Achak
    R. Daher
    N. Safouane
    Boletín de la Sociedad Matemática Mexicana, 2019, 25 : 375 - 383
  • [49] Hypergeometric Gabor transform and uncertainty principles
    Mejjaoli, Hatem
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (03):
  • [50] Quantitative uncertainty principles for the Weinstein transform
    Abouelaz, A.
    Achak, A.
    Daher, R.
    Safouane, N.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (02): : 375 - 383