Uncertainty principles of Heisenberg type for the Bargmann transform

被引:3
|
作者
Soltani, Fethi [1 ,2 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, Lab Anal Math & Applicat LR11ES11, Tunis 2092, Tunisia
[2] Univ Carthage, Ecole Natl Ingenieurs Carthage, Tunis 2035, Tunisia
关键词
Weighted Bergman space; Bargmann transform; Uncertainty inequalities; BERGMAN; OPERATORS; SPACES;
D O I
10.1007/s13370-021-00924-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we introduce a family of weighted Bergman spaces {A(alpha,n)}(n is an element of N). This family satisfies the continuous inclusions A(alpha,n) subset of ... subset of A(alpha,2) subset of A(alpha,1) subset of A(alpha,0) = A(alpha), where A(alpha) is the classical weighted Bergman space. Next, we define and study the derivative operator del = d/dz and its adjoint operator L-alpha = z(2) d/dz + (alpha + 2)z on the weighted Bergman space A(alpha), and we establish an uncertainty inequality of Heisenberg-type for this space. A more general uncertainty inequality for the space A(alpha,n) is also given when we considered the operators del(n) = del(n) and L-alpha,L-n := (L-alpha)(n). Afterward, we give Heisenberg-type and Laeng-Morpurgo-type uncertainty inequalities for the Bargmann transform B-alpha, which is an isometric isomorphism between the space A(alpha) and the Lebesgue space L-2(R+,d mu(alpha)), where d mu(alpha) is an appropriate measure.
引用
收藏
页码:1629 / 1643
页数:15
相关论文
共 50 条
  • [31] Uncertainty principles for the weinstein transform
    Mejjaoli, Hatem
    Salhi, Makren
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2011, 61 (04) : 941 - 974
  • [32] Uncertainty principles for the weinstein transform
    Hatem Mejjaoli
    Makren Salhi
    Czechoslovak Mathematical Journal, 2011, 61 : 941 - 974
  • [33] Uncertainty principles for the Cherednik transform
    R DAHER
    S L HAMAD
    T KAWAZOE
    N SHIMENO
    Proceedings - Mathematical Sciences, 2012, 122 : 429 - 436
  • [34] Uncertainty Inequality for Radon Transform on the Heisenberg Group
    Jinsen Xiao
    Jianxun He
    Complex Analysis and Operator Theory, 2017, 11 : 1603 - 1612
  • [35] The Donoho-Stark, Benedicks and Heisenberg type uncertainty principles, and the localization operators for the Heckman-Opdam continuous wavelet transform on Rd
    Mejjaoli, Hatem
    Trimeche, Khalifa
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2017, 8 (03) : 423 - 452
  • [36] Uncertainty principles for the Hankel transform
    Tuan, Vu Kim
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (05) : 369 - 381
  • [37] On the Bargmann transform and the Wigner transform
    Luo, SL
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1998, 30 : 413 - 418
  • [38] GENERALIZED SEGAL-BARGMANN TRANSFORM AND ITS APPLICATIONS TO THE FIELDS OF UNCERTAINTY
    Soltani, Fethi
    Nenni, Meriem
    PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2024, 50 (02): : 222 - 235
  • [39] (Heisenberg-)Weyl Algebras, Segal-Bargmann Transform and Representations of Poincare Groups
    Havlicek, Miloslav
    Kotrbaty, Jan
    Moylan, Patrick
    Posta, Severin
    32ND INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS (GROUP32), 2019, 1194
  • [40] Heisenberg Uncertainty Principles for the Dunkl Multipier Operators
    Soltani F.
    Rejeb S.B.
    Journal of Mathematical Sciences, 2018, 228 (6) : 695 - 704