A limit result for U-statistics of binary variables

被引:1
|
作者
Utev, S [1 ]
Becker, NG [1 ]
机构
[1] La Trobe Univ, Sch Stat Sci, Bundoora, Vic 3083, Australia
基金
澳大利亚研究理事会;
关键词
U-type statistics; binary random variables; law of the iterated logarithm;
D O I
10.1023/A:1022666901529
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Define r/(k, n) = U-k,U- n - n(k/2)H(k)(Sigma(j =1)(n) X-j/root n), where U-k,U- n = Sigma(1) less than or equal to i(1) not equal ... not equal i(k) less than or equal to n X-i1...X-ik is a symmetric U-type statistic, H-k(.) is the Hermite polynomial of degree k, and {X, X-n, n greater than or equal to 1} are independent identically distributed binary random variables with Pr(X is an element of {-1, 1}) = 1. We show that [GRAPHICS] according as EX = 0 or EX not equal 0, respectively.
引用
收藏
页码:853 / 856
页数:4
相关论文
共 50 条
  • [41] A CENTRAL-LIMIT-THEOREM FOR U-STATISTICS IN THE HILBERT-SPACE
    KOROLYUK, VS
    BOROVSKIKH, YV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1987, (03): : 16 - 18
  • [42] Central limit theorem and the bootstrap for U-statistics of strongly mixing data
    Dehling, Herold
    Wendler, Martin
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (01) : 126 - 137
  • [43] CENTRAL LIMIT THEOREMS FOR REDUCED U-STATISTICS UNDER DEPENDENCE AND THEIR USEFULNESS
    Kim, Tae Yoon
    Ha, Jeongcheol
    Hwang, Sun Young
    Park, Cheolyong
    Luo, Zhi-Ming
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2013, 55 (04) : 387 - 399
  • [44] Optimal bounds in non-Gaussian limit theorems for U-statistics
    Bentkus, V
    Götze, F
    ANNALS OF PROBABILITY, 1999, 27 (01): : 454 - 521
  • [45] On the limit set in the law of the iterated logarithm for U-statistics of order two
    Kwapien, S
    Latala, R
    Oleszkiewicz, K
    Zinn, J
    HIGH DIMENSIONAL PROBABILITY III, 2003, 55 : 111 - 126
  • [46] The central limit theorem for degenerate variable U-statistics under dependence
    Kim, Tae Yoon
    Luo, Zhi-Ming
    Kim, Chiho
    JOURNAL OF NONPARAMETRIC STATISTICS, 2011, 23 (03) : 683 - 699
  • [47] A Central Limit Theorem for incomplete U-statistics over triangular arrays
    Loewe, Matthias
    Terveer, Sara
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2021, 35 (03) : 499 - 522
  • [48] ON THE CENTRAL-LIMIT-THEOREM FOR U-STATISTICS UNDER ABSOLUTE REGULARITY
    ARCONES, MA
    STATISTICS & PROBABILITY LETTERS, 1995, 24 (03) : 245 - 249
  • [49] Limit theorems for nonparametric conditional U-statistics smoothed by asymmetric kernels
    Bouzebda, Salim
    Nezzal, Amel
    Elhattab, Issam
    AIMS MATHEMATICS, 2024, 9 (09): : 26195 - 26282
  • [50] Central limit theorems for generalized U-statistics with applications in nonparametric specification
    Gao, Jiti
    Hong, Yongmiao
    JOURNAL OF NONPARAMETRIC STATISTICS, 2008, 20 (01) : 61 - 76