Optimal bounds in non-Gaussian limit theorems for U-statistics

被引:20
|
作者
Bentkus, V [1 ]
Götze, F [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld 1, Germany
来源
ANNALS OF PROBABILITY | 1999年 / 27卷 / 01期
关键词
U-statistics; degenerate U-statistics; von Mises statistics; symmetric statistics; central limit theorem; convergence rates; Berry-Esseen bounds; Edgeworth expansions; second order efficiency;
D O I
10.1214/aop/1022677269
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X, X-1, X-2,... be i.i.d. random variables taking values in a measurable space H. Let phi(x, y) and phi(1)(x) denote measurable functions of the arguments x, y is an element of H. Assuming that the kernel phi is symmetric and that E phi(x, X) = 0, for all x, and E phi(1)(X) = 0, we consider U-statistics of type [GRAPHICS] It is known that the conditions E phi(2)(X, X-1) < infinity and E phi(1)(2)(X) < infinity imply that the distribution function of T, say F, has a limit, say F-0, which can be described in terms of the eigenvalues of the Hilbert-Schmidt operator associated with the kernel phi(x, y). Under optimal moment conditions, we prove that [GRAPHICS] provided that at least nine eigenvalues of the operator do not vanish. Here F-1 denotes an Edgeworth-type correction. We provide explicit bounds for Delta(N) and for the concentration functions of statistics of type T.
引用
收藏
页码:454 / 521
页数:68
相关论文
共 50 条
  • [1] Bounds for non-Gaussian approximations of U-statistics
    Borovskikh, YV
    Weber, NC
    JOURNAL OF THEORETICAL PROBABILITY, 2002, 15 (02) : 343 - 382
  • [2] Bounds for Non-Gaussian Approximations of U-Statistics
    Yuri V. Borovskikh
    Neville C. Weber
    Journal of Theoretical Probability, 2002, 15 : 343 - 382
  • [3] ON BOUNDS IN LIMIT THEOREMS FOR SOME U-STATISTICS
    Yanushkevichiene, O.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2012, 56 (04) : 660 - 673
  • [4] Limit theorems for U-statistics of Bernoulli data
    Giraudo, Davide
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01): : 793 - 828
  • [5] Almost sure limit theorems for U-statistics
    Holzmann, H
    Koch, S
    Min, A
    STATISTICS & PROBABILITY LETTERS, 2004, 69 (03) : 261 - 269
  • [6] FUNCTIONAL LIMIT-THEOREMS FOR U-STATISTICS
    RONZHIN, AF
    MATHEMATICAL NOTES, 1986, 40 (5-6) : 886 - 893
  • [7] LIMIT THEOREMS FOR NONDEGENERATE U-STATISTICS OF CONTINUOUS SEMIMARTINGALES
    Podolskij, Mark
    Schmidt, Christian
    Ziegel, Johanna F.
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (06): : 2491 - 2526
  • [8] CENTRAL LIMIT THEOREMS FOR U-STATISTICS OF POISSON POINT PROCESSES
    Reitzner, Matthias
    Schulte, Matthias
    ANNALS OF PROBABILITY, 2013, 41 (06): : 3879 - 3909
  • [9] Functional limit theorems for U-statistics indexed by a random walk
    Cabus, P
    Guillotin-Plantard, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (11): : 905 - 910
  • [10] LIMIT-THEOREMS OF THE POISSON TYPE FOR INHOMOGENEOUS U-STATISTICS
    LEVASHOV, MV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1990, (03): : 12 - 14