Optimal bounds in non-Gaussian limit theorems for U-statistics

被引:20
|
作者
Bentkus, V [1 ]
Götze, F [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld 1, Germany
来源
ANNALS OF PROBABILITY | 1999年 / 27卷 / 01期
关键词
U-statistics; degenerate U-statistics; von Mises statistics; symmetric statistics; central limit theorem; convergence rates; Berry-Esseen bounds; Edgeworth expansions; second order efficiency;
D O I
10.1214/aop/1022677269
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X, X-1, X-2,... be i.i.d. random variables taking values in a measurable space H. Let phi(x, y) and phi(1)(x) denote measurable functions of the arguments x, y is an element of H. Assuming that the kernel phi is symmetric and that E phi(x, X) = 0, for all x, and E phi(1)(X) = 0, we consider U-statistics of type [GRAPHICS] It is known that the conditions E phi(2)(X, X-1) < infinity and E phi(1)(2)(X) < infinity imply that the distribution function of T, say F, has a limit, say F-0, which can be described in terms of the eigenvalues of the Hilbert-Schmidt operator associated with the kernel phi(x, y). Under optimal moment conditions, we prove that [GRAPHICS] provided that at least nine eigenvalues of the operator do not vanish. Here F-1 denotes an Edgeworth-type correction. We provide explicit bounds for Delta(N) and for the concentration functions of statistics of type T.
引用
收藏
页码:454 / 521
页数:68
相关论文
共 50 条
  • [41] BOUNDS ON THE TAIL PROBABILITY OF U-STATISTICS AND QUADRATIC-FORMS
    DELAPENA, VH
    MONTGOMERYSMITH, SJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 31 (02) : 223 - 227
  • [42] Berry-Esseen type bounds for trimmed U-statistics
    Borovskikh, Yuri V.
    Weber, N. C.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (04) : 1059 - 1071
  • [43] U-STATISTICS OF RANDOM-SIZE SAMPLES AND LIMIT-THEOREMS FOR SYSTEMS OF MARKOVIAN PARTICLES WITH NON-POISSON INITIAL DISTRIBUTIONS
    FELDMAN, RE
    RACHEV, S
    ANNALS OF PROBABILITY, 1993, 21 (04): : 1927 - 1945
  • [44] Optimal estimation of losses at the ultimate quantum limit with non-Gaussian states
    Adesso, G.
    Dell'Anno, F.
    De Siena, S.
    Illuminati, F.
    Souza, L. A. M.
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [45] OPTIMAL IDENTIFICATION OF NON-GAUSSIAN SIGNALS IN THE BACKGROUND OF NON-GAUSSIAN INTERFERENCE
    MELITITSKY, VA
    SHLYAKHIN, VM
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1986, 29 (04): : 91 - 94
  • [46] Central limit theorem for Gibbsian U-statistics of facet processes
    Jakub Večeřa
    Applications of Mathematics, 2016, 61 : 423 - 441
  • [47] Climatology of Non-Gaussian Atmospheric Statistics
    Perron, Maxime
    Sura, Philip
    JOURNAL OF CLIMATE, 2013, 26 (03) : 1063 - 1083
  • [48] NON-GAUSSIAN STATISTICS IN ISOTROPIC TURBULENCE
    CHEN, HD
    HERRING, JR
    KERR, RM
    KRAICHNAN, RH
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1989, 1 (11): : 1844 - 1854
  • [49] STATISTICS OF NON-GAUSSIAN SCATTERED LIGHT
    SCHAEFER, DW
    PUSEY, PN
    PHYSICAL REVIEW LETTERS, 1972, 29 (13) : 843 - &
  • [50] Phase statistics in non-Gaussian scattering
    Watson, Stephen M.
    Jakeman, Eric
    Ridley, Kevin D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (24): : 7621 - 7640