DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and Semantic Augmentation

被引:0
|
作者
Bai, Haoyue [1 ,2 ]
Sun, Rui [2 ]
Hong, Lanqing [2 ]
Zhou, Fengwei [2 ]
Ye, Nanyang [3 ]
Ye, Han-Jia [4 ]
Chan, S-H Gary [1 ]
Li, Zhenguo [2 ]
机构
[1] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[2] Huawei Noahs Ark Lab, Hong Kong, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[4] Nanjing Univ, Nanjing, Jiangsu, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While deep learning demonstrates its strong ability to handle independent and identically distributed (IID) data, it often suffers from out-of-distribution (OoD) generalization, where the test data come from another distribution (w.r.t. the training one). Designing a general OoD generalization framework for a wide range of applications is challenging, mainly due to different kinds of distribution shifts in the real world, such as the shift across domains or the extrapolation of correlation. Most of the previous approaches can only solve one specific distribution shift, leading to unsatisfactory performance when applied to various OoD benchmarks. In this work, we propose DecAug, a novel decomposed feature representation and semantic augmentation approach for OoD generalization. Specifically, DecAug disentangles the category-related and context-related features by orthogonalizing the two gradients (w.r.t. intermediate features) of losses for predicting category and context labels, where category-related features contain causal information of the target object, while context-related features cause distribution shifts between training and test data. Furthermore, we perform gradient-based augmentation on context-related features to improve the robustness of learned representations. Experimental results show that DecAug outperforms other state-of-the-art methods on various OoD datasets, which is among the very few methods that can deal with different types of OoD generalization challenges.
引用
收藏
页码:6705 / 6713
页数:9
相关论文
共 50 条
  • [11] Causal softmax for out-of-distribution generalization
    Luo, Jing
    Zhao, Wanqing
    Peng, Jinye
    DIGITAL SIGNAL PROCESSING, 2025, 156
  • [12] VITA: A Multi-Source Vicinal Transfer Augmentation Method for Out-of-Distribution Generalization
    Chen, Minghui
    Wen, Cheng
    Zheng, Feng
    He, Fengxiang
    Shao, Ling
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 321 - 329
  • [13] Enhancing Out-of-distribution Generalization on Graphs via Causal Attention Learning
    Sui, Yongduo
    Mao, Wenyu
    Wang, Shuyao
    Wang, Xiang
    Wu, Jiancan
    He, Xiangnan
    Chua, Tat-Seng
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (05)
  • [14] Selecting Augmentation Methods for Domain Generalization and Out-of-Distribution Detection Using Unlabeled Data
    Kucuktas, Ulku Tuncer
    Uysal, Fatih
    Hardalac, Firat
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [15] Semantic enhanced for out-of-distribution detection
    Jiang, Weijie
    Yu, Yuanlong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [16] Out-of-distribution generalization for learning quantum dynamics
    Caro, Matthias C.
    Huang, Hsin-Yuan
    Ezzell, Nicholas
    Gibbs, Joe
    Sornborger, Andrew T.
    Cincio, Lukasz
    Coles, Patrick J.
    Holmes, Zoe
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [17] On the Adversarial Robustness of Out-of-distribution Generalization Models
    Zou, Xin
    Liu, Weiwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [18] On the Out-of-distribution Generalization of Probabilistic Image Modelling
    Zhang, Mingtian
    Zhang, Andi
    McDonagh, Steven
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [19] Assaying Out-Of-Distribution Generalization in Transfer Learning
    Wenzel, Florian
    Dittadi, Andrea
    Gehler, Peter
    Simon-Gabriel, Carl-Johann
    Horn, Max
    Zietlow, Dominik
    Kernert, David
    Russell, Chris
    Brox, Thomas
    Schiele, Bernt
    Scholkopf, Bernhard
    Locatello, Francesco
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [20] Out-of-distribution Generalization and Its Applications for Multimedia
    Wang, Xin
    Cui, Peng
    Zhu, Wenwu
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5681 - 5682