On the Out-of-distribution Generalization of Probabilistic Image Modelling

被引:0
|
作者
Zhang, Mingtian [1 ,2 ]
Zhang, Andi [2 ,3 ]
McDonagh, Steven [2 ]
机构
[1] UCL, AI Ctr, London, England
[2] Huawei Noahs Ark Lab, Montreal, PQ, Canada
[3] Univ Cambridge, Dept Comp Sci & Technol, Cambridge, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Out-of-distribution (OOD) detection and lossless compression constitute two problems that can be solved by the training of probabilistic models on a first dataset with subsequent likelihood evaluation on a second dataset, where data distributions differ. By defining the generalization of probabilistic models in terms of likelihood we show that, in the case of image models, the OOD generalization ability is dominated by local features. This motivates our proposal of a Local Autoregressive model that exclusively models local image features towards improving OOD performance. We apply the proposed model to OOD detection tasks and achieve state-of-the-art unsupervised OOD detection performance without the introduction of additional data. Additionally, we employ our model to build a new lossless image compressor: NeLLoC (Neural Local Lossless Compressor) and report state-of-the-art compression rates and model size.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Certifiable Out-of-Distribution Generalization
    Ye, Nanyang
    Zhu, Lin
    Wang, Jia
    Zeng, Zhaoyu
    Shao, Jiayao
    Peng, Chensheng
    Pan, Bikang
    Li, Kaican
    Zhu, Jun
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 10927 - 10935
  • [2] How Image Corruption and Perturbation Affect Out-of-Distribution Generalization and Calibration
    Tada, Keigo
    Naganuma, Hiroki
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [3] OoDHDR-Codec: Out-of-Distribution Generalization for HDR Image Compression
    Cao, Linfeng
    Jiang, Aofan
    Li, Wei
    Wu, Huaying
    Ye, Nanyang
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 158 - 166
  • [4] Out-of-Distribution Generalization in Kernel Regression
    Canatar, Abdulkadir
    Bordelon, Blake
    Pehlevan, Cengiz
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [5] Causal softmax for out-of-distribution generalization
    Luo, Jing
    Zhao, Wanqing
    Peng, Jinye
    DIGITAL SIGNAL PROCESSING, 2025, 156
  • [6] Segmentation Consistency Training: Out-of-Distribution Generalization for Medical Image Segmentation
    Torpmann-Hagen, Birk
    Thambawita, Vajira
    Riegler, Michael A.
    Halvorsen, Pal
    Glette, Kyrre
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM), 2022, : 42 - 49
  • [7] Out-of-distribution generalization for learning quantum dynamics
    Caro, Matthias C.
    Huang, Hsin-Yuan
    Ezzell, Nicholas
    Gibbs, Joe
    Sornborger, Andrew T.
    Cincio, Lukasz
    Coles, Patrick J.
    Holmes, Zoe
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [8] On the Adversarial Robustness of Out-of-distribution Generalization Models
    Zou, Xin
    Liu, Weiwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [9] Assaying Out-Of-Distribution Generalization in Transfer Learning
    Wenzel, Florian
    Dittadi, Andrea
    Gehler, Peter
    Simon-Gabriel, Carl-Johann
    Horn, Max
    Zietlow, Dominik
    Kernert, David
    Russell, Chris
    Brox, Thomas
    Schiele, Bernt
    Scholkopf, Bernhard
    Locatello, Francesco
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [10] Out-of-distribution Generalization and Its Applications for Multimedia
    Wang, Xin
    Cui, Peng
    Zhu, Wenwu
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 5681 - 5682