A Generic Spatiotemporal Scheduling for Autonomous UAVs: A Reinforcement Learning-Based Approach

被引:16
|
作者
Bouhamed, Omar [1 ,2 ]
Ghazzai, Hakim [1 ]
Besbes, Hichem [2 ]
Massoud, Yehia [1 ]
机构
[1] Stevens Inst Technol, Sch Syst & Enterprises, Hoboken, NJ 07030 USA
[2] Univ Carthage, Higher Sch Commun Tunis, Tunis 2083, Tunisia
关键词
Reinforcement learning; scheduling solution; smart city; unmanned aerial vehicles (UAVs); vehicle routing problem; VEHICLE; VRP;
D O I
10.1109/OJVT.2020.2979559
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Considerable attention has been given to leverage a variety of smart city applications using unmanned aerial vehicles (UAVs). The rapid advances in artificial intelligence can empower UAVs with autonomous capabilities allowing them to learn from their surrounding environment and act accordingly without human intervention. In this paper, we propose a spatiotemporal scheduling framework for autonomous UAVs using reinforcement learning. The framework enables UAVs to autonomously determine their schedules to cover the maximum of pre-scheduled events spatially and temporally distributed in a given geographical area and over a pre-determined time horizon. The designed framework has the ability to update the planned schedules in case of unexpected emergency events. The UAVs are trained using the Q-learning (QL) algorithm to find effective scheduling plan. A customized reward function is developed to consider several constraints especially the limited battery capacity of the flying units, the time windows of events, and the delays caused by the UAV navigation between events. Numerical simulations show the behavior of the autonomous UAVs for various scenarios and corroborate the ability of QL to handle complex vehicle routing problems with several constraints. A comparison with an optimal deterministic solution is also provided to validate the performance of the learning-based solution.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 50 条
  • [1] A reinforcement learning-based approach for online bus scheduling
    Liu, Yingzhuo
    Zuo, Xingquan
    Ai, Guanqun
    Liu, Yahong
    KNOWLEDGE-BASED SYSTEMS, 2023, 271
  • [2] A deep reinforcement learning-based approach for the residential appliances scheduling
    Li, Sichen
    Cao, Di
    Huang, Qi
    Zhang, Zhenyuan
    Chen, Zhe
    Blaabjerg, Frede
    Hu, Weihao
    ENERGY REPORTS, 2022, 8 : 1034 - 1042
  • [3] Vision Based Autonomous Tracking of UAVs Based on Reinforcement Learning
    Xiong, Guohong
    Dong, Lu
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2682 - 2686
  • [4] A Reinforcement Learning-based Path Planning for Collaborative UAVs
    Rahim, Shahnila
    Razaq, Mian Muaz
    Chang, Shih Yu
    Peng, Limei
    37TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, 2022, : 1938 - 1943
  • [5] A Reinforcement Learning-Based Adaptive Path Tracking Approach for Autonomous Driving
    Shan, Yunxiao
    Zheng, Boli
    Chen, Longsheng
    Chen, Long
    Chen, De
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) : 10581 - 10595
  • [6] A Reinforcement Learning-based Approach to Dynamic Job-shop Scheduling
    WEI YingZi ZHAO MingYang Shenyang Institute of AutomationChinese Academy of SciencesShenyang Shenyang Ligong UniversityShenyang
    自动化学报, 2005, (05) : 113 - 119
  • [7] Beyond Max-weight Scheduling: A Reinforcement Learning-based Approach
    Bae, Jeongmin
    Lee, Joohyun
    Chong, Song
    17TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT 2019), 2019, : 92 - 99
  • [8] Reinforcement Learning-Based Guidance of Autonomous Vehicles
    Clemmons, Joseph
    Jin, Yu-Fang
    2023 24TH INTERNATIONAL SYMPOSIUM ON QUALITY ELECTRONIC DESIGN, ISQED, 2023, : 496 - 501
  • [9] DEEP REINFORCEMENT LEARNING-BASED IRRIGATION SCHEDULING
    Yang, Y.
    Hu, J.
    Porter, D.
    Marek, T.
    Heflin, K.
    Kong, H.
    Sun, L.
    TRANSACTIONS OF THE ASABE, 2020, 63 (03) : 549 - 556
  • [10] Learning-Based Navigation and Collision Avoidance Through Reinforcement for UAVs
    Azzam, Rana
    Chehadeh, Mohamad
    Hay, Oussama Abdul
    Humais, Muhammad Ahmed
    Boiko, Igor
    Zweiri, Yahya
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (03) : 2614 - 2628