A Generic Spatiotemporal Scheduling for Autonomous UAVs: A Reinforcement Learning-Based Approach

被引:16
|
作者
Bouhamed, Omar [1 ,2 ]
Ghazzai, Hakim [1 ]
Besbes, Hichem [2 ]
Massoud, Yehia [1 ]
机构
[1] Stevens Inst Technol, Sch Syst & Enterprises, Hoboken, NJ 07030 USA
[2] Univ Carthage, Higher Sch Commun Tunis, Tunis 2083, Tunisia
关键词
Reinforcement learning; scheduling solution; smart city; unmanned aerial vehicles (UAVs); vehicle routing problem; VEHICLE; VRP;
D O I
10.1109/OJVT.2020.2979559
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Considerable attention has been given to leverage a variety of smart city applications using unmanned aerial vehicles (UAVs). The rapid advances in artificial intelligence can empower UAVs with autonomous capabilities allowing them to learn from their surrounding environment and act accordingly without human intervention. In this paper, we propose a spatiotemporal scheduling framework for autonomous UAVs using reinforcement learning. The framework enables UAVs to autonomously determine their schedules to cover the maximum of pre-scheduled events spatially and temporally distributed in a given geographical area and over a pre-determined time horizon. The designed framework has the ability to update the planned schedules in case of unexpected emergency events. The UAVs are trained using the Q-learning (QL) algorithm to find effective scheduling plan. A customized reward function is developed to consider several constraints especially the limited battery capacity of the flying units, the time windows of events, and the delays caused by the UAV navigation between events. Numerical simulations show the behavior of the autonomous UAVs for various scenarios and corroborate the ability of QL to handle complex vehicle routing problems with several constraints. A comparison with an optimal deterministic solution is also provided to validate the performance of the learning-based solution.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 50 条
  • [21] Reinforcement Learning-Based Predictive Control for Autonomous Electrified Vehicles
    Liu, Teng
    Yang, Chao
    Hu, Chuanzheng
    Wang, Hong
    Li, Li
    Cao, Dongpu
    Wang, Fei-Yue
    2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 185 - 190
  • [22] Development of a Simulator for Prototyping Reinforcement Learning-Based Autonomous Cars
    Holen, Martin
    Knausgard, Kristian Muri
    Goodwin, Morten
    INFORMATICS-BASEL, 2022, 9 (02):
  • [23] Deep reinforcement learning-based collision avoidance for an autonomous ship
    Chun, Do-Hyun
    Roh, Myung-Il
    Lee, Hye-Won
    Ha, Jisang
    Yu, Donghun
    OCEAN ENGINEERING, 2021, 234
  • [24] Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator
    Gutierrez-Moreno, Rodrigo
    Barea, Rafael
    Lopez-Guillen, Elena
    Araluce, Javier
    Bergasa, Luis M.
    SENSORS, 2022, 22 (21)
  • [25] A review on reinforcement learning-based highway autonomous vehicle control
    Irshayyid, Ali
    Chen, Jun
    Xiong, Guojiang
    GREEN ENERGY AND INTELLIGENT TRANSPORTATION, 2024, 3 (04):
  • [26] Autonomous Car Following: A Learning-Based Approach
    Lefevre, Stephanie
    Carvalho, Ashwin
    Borrelli, Francesco
    2015 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2015, : 920 - 926
  • [27] Deep learning-based visual navigation control method for autonomous trajectory of UAVs
    Lv J.
    Tu L.
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [28] Reinforcement Learning-based Hierarchical Seed Scheduling for Greybox Fuzzing
    Wang, Jinghan
    Song, Chengyu
    Yin, Heng
    28TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2021), 2021,
  • [29] Deep Reinforcement Learning-Based Scheduling for Multiband Massive MIMO
    Lopes, Victor Hugo L.
    Nahum, Cleverson Veloso
    Dreifuerst, Ryan M.
    Batista, Pedro
    Klautau, Aldebaro
    Cardoso, Kleber Vieira
    Heath Jr, Robert W.
    IEEE ACCESS, 2022, 10 : 125509 - 125525
  • [30] A Reinforcement Learning-based Multipath Scheduling for Heterogeneous Wireless Networks
    Nguyen, Thanh Trung
    Vu, Minh Hai
    Le Nguyen, Phi
    Do, Phan Thuan
    Nguyen, Kien
    2022 IEEE 8TH WORLD FORUM ON INTERNET OF THINGS, WF-IOT, 2022,