A novel nanowire channel poly-Si TFT functioning as transistor and nonvolatile SONOS memory

被引:48
|
作者
Chen, Shih-Ching [1 ]
Chang, Ting-Chang
Liu, Po-Tsun
Wu, Yung-Chun
Lin, Po-Shun
Tseng, Bae-Heng
Shy, Jang-Hung
Sze, S. M.
Chang, Chun-Yen
Lien, Chen-Hsin
机构
[1] Natl Tsing Hua Univ, Inst Elect Engn, Hsinchu 300, Taiwan
[2] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 804, Taiwan
[3] Natl Sun Yat Sen Univ, Inst Electroopt Engn, Kaohsiung 804, Taiwan
[4] Natl Sun Yat Sen Univ, Ctr Nanosci & Nanotechnol, Kaohsiung 804, Taiwan
[5] Natl Chiao Tung Univ, Dept Photon, Hsinchu 300, Taiwan
[6] Natl Chiao Tung Univ, Display Inst, Hsinchu 300, Taiwan
[7] Natl Tsing Hua Univ, Dept Engn & Syst Sci, Hsinchu 300, Taiwan
[8] Natl Sun Yat Sen Univ, Inst Mat Sci & Engn, Kaohsiung 804, Taiwan
[9] Natl Chiao Tung Univ, Inst Elect, Hsinchu 300, Taiwan
关键词
nanowire (NW); nonvolatile memory; polysilicon (poly-Si); silicon-oxide-nitride-oxide-silicon (SONOS); thin-film transistor (TFT);
D O I
10.1109/LED.2007.903885
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, a polycrystalline silicon thin-film transistor consisting of silicon-oxide-nitride-oxide-silicon (SONOS) stack gate dielectric and nanowire (NW) channels was investigated for the applications of transistor and nonvolatile memory. The proposed device, which is named as NW SONOS-TFT, has superior electrical characteristics of transistor, including a higher drain current, a smaller threshold voltage (V-th), and a steeper subthreshold slope. Moreover, the NW SONOS-TFT also can exhibit high program/erase efficiency under adequate bias operation. The duality of both transistor and memory device for the NW SONOS-TFT can be attributed to the trigate structure and channel corner effect.
引用
收藏
页码:809 / 811
页数:3
相关论文
共 50 条
  • [1] A novel poly-Si nanowire TFT for nonvolatile memory applications
    Hsu, Hsin-Hwei
    Lin, Horng-Chih
    Huang, Jian-Fu
    Huang, Tiao-Yuan
    MTTD 2007 TAIPEI: PROCEEDINGS OF 2007 IEEE INTERNATIONAL WORKSHOP ON MEMORY TECHNOLOGY, DESIGN, AND TESTING (MTD '07), 2008, : 55 - 56
  • [2] Characteristics of poly-Si TFT combined with nonvolatile SONOS memory and nanowire channels structure
    Chen, Shih-Ching
    Chang, Ting-Chang
    Liu, Po-Tsun
    Wu, Yung-Chun
    Lin, Po-Shun
    Chen, Shih-Cheng
    Chin, Jing-Yi
    Sze, S. M.
    Chang, Chun-Yen
    Lien, Chen-Hsin
    SURFACE & COATINGS TECHNOLOGY, 2007, 202 (4-7): : 1287 - 1291
  • [3] A Novel SONOS Memory With Recessed-Channel Poly-Si TFT via Excimer Laser Crystallization
    Lee, I-Che
    Tsai, Chun-Chien
    Kuo, Hsu-Hang
    Yang, Po-Yu
    Wang, Chao-Lung
    Cheng, Huang-Chung
    IEEE ELECTRON DEVICE LETTERS, 2012, 33 (04) : 558 - 560
  • [4] Low-Frequency Noise in Poly-Si TFT SONOS Memory With a Trigate Nanowire Structure
    Hu, Hsin-Hui
    Jheng, Yong-Ren
    Wu, Yung-Chun
    Hung, Min-Feng
    Huang, Guo-Wei
    IEEE ELECTRON DEVICE LETTERS, 2011, 32 (12) : 1698 - 1700
  • [5] Comprehensive study of variability in poly-Si channel nanowire transistor
    Ota, Kensuke
    Kawai, Tomoya
    Saitoh, Masumi
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2019, 58 (SB)
  • [6] Physical and Electrical Analysis of Poly-Si Channel Effect on SONOS Flash Memory
    Jeong, Jun-Kyo
    Sung, Jae-Young
    Ko, Woon-San
    Nam, Ki-Ryung
    Lee, Hi-Deok
    Lee, Ga-Won
    MICROMACHINES, 2021, 12 (11)
  • [7] Tri-gated Poly-Si Nanowire SONOS Devices
    Hsu, Hsing-Hui
    Liu, Ta-Wei
    Lin, Chuan-Ding
    Chia Kuo-Jung
    Huang, Tiao-Yuan
    Lin, Horng-Chih
    PROCEEDINGS OF TECHNICAL PROGRAM: 2009 INTERNATIONAL SYMPOSIUM ON VLSI TECHNOLOGY, SYSTEMS AND APPLICATIONS, 2009, : 148 - +
  • [8] A low temperature processed Si-quantum-dot poly-Si TFT nonvolatile memory device
    孙玮
    Journal of Semiconductors, 2013, (06) : 77 - 80
  • [9] A low temperature processed Si-quantum-dot poly-Si TFT nonvolatile memory device
    孙玮
    Journal of Semiconductors, 2013, 34 (06) : 77 - 80
  • [10] A low temperature processed Si-quantum-dot poly-Si TFT nonvolatile memory device
    Sun Wei
    JOURNAL OF SEMICONDUCTORS, 2013, 34 (06)