Applying heat flux method to laminar burning velocity measurements of NH3/CH4/air at elevated pressures and kinetic modeling study

被引:63
|
作者
Wang, Shixing [1 ]
Wang, Zhihua [2 ]
Chen, Chenlin [2 ]
Elbaz, Ayman M. [1 ]
Sun, Zhiwei [3 ,4 ]
Roberts, William L. [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Clean Combust Res Ctr, Thuwal, Saudi Arabia
[2] Zhejiang Univ, State Key Lab Clean Energy Utilizat, Hangzhou 310027, Peoples R China
[3] Univ Adelaide, Sch Mech Engn, Adelaide, SA 5005, Australia
[4] Univ Adelaide, Ctr Energy Technol, Adelaide, SA 5005, Australia
基金
中国国家自然科学基金;
关键词
Ammonia; Methane; High pressure; Laminar burning velocity; Chemical kinetic mechanism; PREMIXED FLAMES; MARKSTEIN LENGTH; HIGH-TEMPERATURE; AMMONIA; COMBUSTION; HYDROGEN; MIXTURES; METHANE; CHEMISTRY; OXIDATION;
D O I
10.1016/j.combustflame.2021.111788
中图分类号
O414.1 [热力学];
学科分类号
摘要
Combustion of ammonia (NH3) blended fuels under elevated pressure conditions is critical for adopting this non-carbon fuel in the energy system for decarbonization. In the present work, laminar burning velocities of ammonia/methane(CH4)/air mixtures were measured using the heat-flux method at the pressure from 1 to 5 atm with the mixture equivalence ratios ranging from 0.6 to 1.6 and the mole fraction of NH3 ranging from 0 to 1.0. The relatively completed results obtained at elevated pressures were then used for validating and modifying the kinetic mechanisms (CEU-NH3-Mech 1.0) leading to a new version (CEU-NH3-Mech-1.1). Experimental results of NH3/H-2/air in the present work, NH3/H-2/CO/air mixtures measured on the same setup and reported in our previous works were also considered in the development of the kinetic mechanism. It was found that the CEU-NH3 -Mech-1.1 can predict well the laminar flame speed, ignition delay time and species concentration in the ammonia oxidation at high temperatures for both NH3/CH4/air and NH3/H-2/CO/air mixtures in a wide range of equivalence ratios and elevated pressures, including oxygen-enriched combustion conditions. The present experimental results also show that the value of pressure exponent (beta) varies with the mole fraction of ammonia and behaves differently for the mixtures of ammonia blending into CH4 and H-2 . The kinetic and sensitivity analyses show that the sensitive reactions for beta are weakly correlated to those for the laminar burning velocity, indicating that beta can also work as a potential parameter for validating kinetic mechanisms. Ammonia content in the NH3/CH4/air mixtures determines the pressure exponent variation at over-rich equivalence ratios and reaction pathway variation in the post-flame zone. This work also clarifies the utilization of ammonia containing fuels in rich-lean combustion strategies. (c) 2021 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Laminar burning velocity measurement of CH4/H2/NH3-air premixed flames at high mixture temperatures
    Berwal, Pragya
    Shawnam
    Kumar, Sudarshan
    FUEL, 2023, 331
  • [32] An experimental and kinetic modelling study on the oxidation of NH3, NH3/H2, NH3/CH4 in a variable pressure laminar flow reactor at engine-relevant conditions
    Zhang, Zhenyingnan
    Li, Ang
    Li, Zhuohang
    Ren, Fei
    Zhu, Lei
    Huang, Zhen
    COMBUSTION AND FLAME, 2024, 265
  • [33] Experimental study on the Markstein length and laminar burning velocity of CH4/RP-3 mixture
    Yu Liu
    Rui Luo
    Zhen Sun
    Wen Zeng
    Baodong Chen
    S. S. Chung
    Journal of Mechanical Science and Technology, 2017, 31 : 5527 - 5537
  • [34] Experimental study on the Markstein length and laminar burning velocity of CH4/RP-3 mixture
    Liu, Yu
    Luo, Rui
    Sun, Zhen
    Zeng, Wen
    Chen, Baodong
    Chung, S. S.
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2017, 31 (11) : 5527 - 5537
  • [35] Effects of air-staging and heat losses on NO emissions of NH3/CH4/air swirling flames
    Wang, Shixing
    Elbaz, Ayman M.
    Wang, Zhihua
    Roberts, William L.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [36] Development of a comprehensive laminar burning velocity and flame instability profile of refined producer gas (H2:CO:CH4) - Air mixtures at elevated pressures
    Tippa, Muniraja
    Yaswanthram, G.
    Subbiah, Senthilmurugan
    Prathap, Chockalingam
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (85) : 36073 - 36083
  • [37] Experimental and kinetic modeling study of the laminar burning velocity of CH4/H2 mixtures under oxy-fuel conditions
    Hu, Xianzhong
    Chen, Jundie
    Lin, Qianjin
    Konnov, Alexander A.
    FUEL, 2024, 376
  • [38] Experimental study and kinetic modeling of NH3/CH4 co-oxidation in a jet-stirred reactor
    Jin, Shaocai
    Tu, Yaojie
    Liu, Hao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (85) : 36323 - 36341
  • [39] Laminar burning velocities of CH4/O2/N2 and oxygen-enriched CH4/O2/CO2 flames at elevated pressures measured using the heat flux method
    Wang, Shixing
    Wang, Zhihua
    He, Yong
    Han, Xinlu
    Sun, Zhiwei
    Zhu, Yanqun
    Costa, Mario
    FUEL, 2020, 259
  • [40] Effect of radiation on laminar flame speed determination in spherically propagating NH3 -air, NH 3/CH4 -air and NH3/H2 -air flames at normal temperature and pressure
    Faghih, Mahdi
    Valera-Medina, Agustin
    Chen, Zheng
    Paykani, Amin
    COMBUSTION AND FLAME, 2023, 257